تعیین درجه حرارت زینترینگ بوکسیت معدن دوپلان به عنوان ماده اولیه مصرفی در صنعت دیرگداز

نوع مقاله: علمی-پژوهشی

نویسندگان

1 استادیار، گروه مواد، واحد شهر مجلسی، دانشگاه آزاد اسلامی

2 استادیار، گروه زمین شناسی، واحد بندرعباس، دانشگاه آزاد اسلامی

3 کارشناس ارشد پژوهشی و مدیر واحد مینرالوژی شرکت فناوران رهاورد کوشا

چکیده

در این پروژه ماده اولیه­ای بوکسیتی، به منظور تعیین درجه حرارت زینترینگ مورد بررسی قرار گرفت. نمونه­هائی از این ماده اولیه در حرارت­های 1100، 1200 و 1300 درجه سانتی­گراد به مدت 5 ساعت پخت داده شدند. ترکیب شیمیایی و فازی بوکسیت خام و پخته با استفاده از روش­های XRF و XRD مشخص گردیدند و میزان تخلخل و دانسیته آن معین شدند. این ماده اولیه متشکل از کانی­های دیاسپور و بوهمیت بوده­اند. کائولینیت و آناتاز (TiO2) به عنوان ناخالصی در بوکسیت خام وجود داشته­اند. بوکسیت پخته شامل مولیت، سیلیس، کوراندم و روتیل بوده است. TiO2 در اثر حرارت تغییر فاز داده و در حرارت­های بالا منبسط شده که می­تواند به عنوان عامل ایجاد ترک در نمونه مطرح باشد. بنابراین عامل تخلخل زیاد بوکسیت در دمای 1300 درجه سانتیگراد را می­توان علاوه بر خروج آب شبکه­ای کانی­های دیاسپور، بوهمیت و ناخالصی کائولینیت، حاصل ترک­های ناشی از انبساط TiO2 نیز به شمار آورد. نتیجه حاصل از آزمایشات نشان داده است که دمای 1200 درجه سانتی­گراد مناسب­ترین دما برای زینترینگ این بوکسیت می­باشد.

کلیدواژه‌ها


[1]     Russell, "Bauxite & alumina—A guide to non-metallurgical use sand markets", Surrey, United Kingdom, Metal Bulletin plc, 112 p., 1999.

 [2]     Gateman, "Bauxite Mineral Review", Ceramic Bulletin, June, PP. 245-252, 1998.

 [3]     Caballero & J. Requena, "Refractory Bauxite", Ceramic International, Vol. 12, PP. 27 - 35, 1986.

 [4]     N. M. Khalili, "Refractory concrete based on barium aluminate–barium zirconate cements for steel-making industries", Ceram. Int. 31, pp. 937–943, 2005.

 [5]     M. Nouri-Khezrabad, M. A. L. Braulio, V. C. Pandolfelli, F. Golestani- Farda & H.R. Rezaie, "Nano-bonded refractory castables", Ceram. Int. 39, pp. 3479–3497, 2013.

 [6]     S. Jonas & F Nadachowski, "A new non-silicate refractory of low thermal expansion", Ceramics International, 24 pp. 211–216, 1998.

 [7]     J. D. Kenneth, J. Temuujin, T. MacKenzie, B. Jadambaa, B. Namjildorj, M. E. Olziiburen, Smith & P. Angerer, "Effect of mechanochemical treatment on the synthesis of calcium dialuminate", Journal of Materials Chemistry 10,  pp. 1019–1023, 2000.

 [8]     B. Singh & A. J. Majumdar, "The hydration of calcium dialuminate and its mixtures containing slag", Cement and Concrete Research 22 (6), pp. 1019–1026, 1992.

 [9]     S. Jonas, F. Nadachowskia & D. Szwagierczak, "Low thermal expansion refractory composites based on CaAl4O7," Ceramics International 25 pp. 77–84, 1999.

 [10]    ر .نقی زاده، ع .بنی طباء، ف .آریان­پور و ب .پناهی، "بررسی خواص فیزیکی، شیمیایی و مینرالوژیکی بوکسیت دیرگداز احیه لوشان"، مجلة دانشکدة فنی، جلد ۳۵، شماره ۲ (مهندسی مکانیک)، صص 41-49 بهار ۱۳۸۷.

 [11] Russell, Refractory Bauxite Changing Face of Supply, Industrial Minerals, October, PP. 52-67, 1997.

 [12] W. H. Maclean, F. F. Banaria & G. Sama, "Mineral Deposite", Vol 32, pp. 607-616, 1997.

 [13] Molin & K. Ganbari Ahari, “High Temperature Property Development of Bauxite Bricks”, 45th Colloquium on Refractories, Aachen, PP. 141-146, 2000.

 [14] S. Iwai, H. Tagai, & T. Shimamune,, "Procedure for dickit structure modification by dehydration", Acta Crystallography, B 27, pp. 248 – 250, 1971.

 [15] [K. Srikrishna, G. Thomas, R. Martinez, M. P. Corral, S. De Az, & J. S. Moya, "Kaolinite-mulli reaction series". J. Mater. Sci. 25, pp. 607 – 612, 1990.

 [16] I. W. M. Brown, K. J. D. Mackenzie, M. E. Bowen, & R.H. Meinhold, "Outstanding problems in the kaolinite-mullite reaction sequence investigated by Si and Al solidstate nuclear magnetic resonance: High-temperature transformations of metakaolinite", Am J. Ceram. Soc. 68, pp. 298-301, 1995.

[17] Baudin, & J. S. Moya, "Influence of Titanium Dioxide on the Sintering and Microstructural Evolution of Mullite". Commun. Of the Am. Ceramic. Soc. C 134, 1984.

 [18] Baudin, M.I. Osendi, & J. S Moya, "Solid solution of TiO2 in Mullite". J. Mater. Sci. Lett. 2, pp. 185–187, 1983.

 [19] Y. Yuanfen & C. Hongchen, "Monolithic Refractory Based on Chinese Raw Materials", Interceram, Vol. 45, No.1, PP. 52-57, 1996.

 G.H. Chester, "Refractories production and properties", The iron and steel institute, London, 562 p., 1983.