تاثیر بازدارنده ای بر پایه ایمیدازولین بر خوردگی فولاد API 5L Gr.B در آب دریای ساختگی

نوع مقاله: علمی-پژوهشی

نویسندگان

1 استادیار، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه بوعلی سینا

2 دانش آموخته کارشناسی ارشد، گروه مهندسی مواد، دانشکده مهندسی، دانشگاه بوعلی سینا

چکیده

در این پژوهش، رفتار خوردگی فولاد کربنی API 5L Gr.B و میزان تزریق بازدارنده­­ای بر پایه ایمیدازولین در آب دریای ساختگی بررسی شد. برای این منظور پس از غوطه­وری نمونه­ها در پتانسیل مدار باز به­مدت زمان­ 30 دقیقه، آزمون­های پلاریزاسیون تافل و طیف­سنجی امپدانس الکتروشیمیایی انجام شدند. منحنی­های پلاریزاسیون تافل نشان داد که کم­ترین مقدار چگالی جریان خوردگی با افزودن مقدار ppm 40 از بازدارنده به­دست می­آید. نتایج آزمون­های طیف­سنجی امپدانس الکتروشیمیایی آشکار ساخت که بیش­ترین مقدار مقاومت پلاریزاسیون با افزودن مقدار ppm 40 از بازدارنده به­دست می­آید که تایید کننده نتایج آزمون­های پلاریزاسیون تافل است. هم­چنین نتایج آزمون­های طیف­سنجی امپدانس الکتروشیمیایی آشکار ساخت که بهترین مدار معادل دارای دو ثابت زمانی است.

کلیدواژه‌ها


[1]     J. Zhang, J. Liu, W. Yu, Y. Yan, L. You & L. Liu, “Molecular modeling of the inhibition mechanism of 1-(2-aminoethyl)-2-alkyl-imidazoline”, Corrosion Science, Vol. 52, pp. 2059–2065, 2010.

 [2]     D.M. Ortega-Toledo, J.G. Gonzalez-Rodriguez, M. Casales, L. Martinez & A. Martinez-Villafañe, “CO2 corrosion inhibition of X-120 pipeline steel by a modified imidazoline under flow conditions”, Corrosion Science, Vol. 53, pp. 3780–3787, 2011.

 [3]     J. Liu, W. Yu, J. Zhang, S. Hu, L. You & G. Qiao, “Molecular modeling study on inhibition performance of imidazolines for mild steel in CO2 corrosion”, Applied Surface Science, Vol. 256, pp. 4729–4733, 2010.

 [4]     G. Trabanelli, V. Carassiti, “Mechanism and Phenomenology of Organic Inhibitors, Advanced Corrosion Science and Technology, Ed. M.G. Fontana, R.W. Staehle, Plenum Press, New York, NY, Vol. 1, p. 170, 1970.

 [5]     P.C. Okafor & Y. Zheng, “Synergistic inhibition behaviour of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions”, Corrosion Science, Vol. 51, pp. 850–859, 2009.

 [6]     F. Mansfeld, Corrosion Mechanisms, p. 119, Marcel. Dekker Inc, 1987.

 [7]     D. Wang, S. Li, Y. Ying, M. Wang, H. Xiao & Z. Chen, “Theoretical and experimental studies of structure and inhibition efficiency of imidazoline derivatives”, Corrosion Science, Vol. 41, pp. 1911–1919, 1999.

 [8]     P.C. Okafor, X. Liu & Y.G. Zheng, “Corrosion inhibition of mild steel by ethylamino imidazoline derivative in CO2-saturated solution, Corrosion Science, Vol. 51, pp. 761–768, 2009.

 [9]     B. Wang, M. Du, J. Zhang & C.J. Gao, “Electrochemical and surface analysis studies on corrosion inhibition of Q235 steel by imidazoline derivative against CO2 corrosion”, Corrosion Science, Vol. 53, pp. 353–361, 2011.

 [10]    X. Jiang, Y.G. Zheng & W. Ke, “Effect of flow velocity and entrained sand on inhibition performances of two inhibitors for CO2 corrosion of N80 steel in 3% NaCl solution”, Corrosion Science, Vol. 47, pp. 2636–2658, 2005.

 [11]    L.J. Korb, D.L. Olsen, “Metals Handbook”, Ninth Edition, Corrosion in Petroleum Production Operation, Vol. 13, 1232–1244, 1987.

 [12]    Y. Chen, T. Hong, M. Gopal & W.P. Jepson, “EIS studies of a corrosion inhibitor behavior under multiphase flow conditions”, Corrosion Science, Vol. 42, pp. 979–990, 2000.

 [13]    G. Zhang, C. Chen, M. Lu, C. Chai & Y. Wu, “Evaluation of inhibition efficiency of an imidazoline derivative in CO2-containing aqueous solution”, Materials Chemistry and Physics, Vol. 105, pp. 331–340, 2007.

 [14]    M. Heydari & M. Javidi, “Corrosion inhibition and adsorption behaviour of an amido-imidazoline derivative on API 5L X52 steel in CO2-saturated solution and synergistic effect of iodide ions”, Corrosion Science, Vol. 61, pp. 148–155, 2012.

 [15]    J. Zhang, G. Qiao, S. Hu, Y. Yan, Z. Ren & L. Yu, “Theoretical evaluation of corrosion inhibition performance of imidazoline compounds with different hydrophilic groups”, Corrosion Science, Vol. 53, pp. 147–152, 2011.

 [16]    S. Xia, M. Qiu, L. Yu, F. Liu & H. Zhao, “Molecular dynamics and density functional theory study on relationship between structure of imidazoline derivatives and inhibition performance”, Corrosion Science, Vol. 50, pp. 2021–2029, 2008.

 [17]    L.M. Rodrıguez-Valdez, W. Villamisar, M. Casales, J.G. Gonzalez-Rodriguez, A. Martınez-Villafane, L. Martinez & D. Glossman-Mitnik, “Computational simulations of the molecular structure and corrosion properties of amidoethyl, aminoethyl and hydroxyethyl imidazolines inhibitors”, Corrosion Science, Vol. 48, pp. 4053–4064, 2006.

 [18]    J. Zhao & G. Chen, “The synergistic inhibition effect of oleic-based imidazoline and sodium benzoate on mild steel corrosion in a CO2-saturated brine solution”, Electrochimica Acta, Vol. 69, pp. 247– 255, 2012.

 [19]    X. Liu, P.C. Okafor & Y.G. Zheng, “The inhibition of CO2 corrosion of N80 mild steel in single liquid phase and liquid/particle two-phase flow by aminoethyl imidazoline derivatives”, Corrosion Science, Vol. 51, pp. 744–751, 2009.

 [20]    J. Cruz, R. Martınez, J. Genesca & E. Garcıa-Ochoa, “Experimental and theoretical study of 1-(2-ethylamino)-2-methylimidazoline as an inhibitor of carbon steel corrosion in acid media”, Journal of Electroanalytical Chemistry, Vol. 566, pp. 111–121, 2004.

 [21]    T. Murakava & N. Hackerman, “The Double Layer Capacity at the Interface Between Iron and Acid Solutions with and without Organic Materials”, Corrosion Science, Vol. 4, pp. 387– 396, 1964.

 [22]    S. H. Yoo, Y. W. Kim, K. Chung, S. Y. Baik & J. S. Kim, “Synthesis and corrosion inhibition behavior of imidazoline derivatives based on vegetable oil”, Corrosion Science, Vol. 59, pp. 42–54, 2012.

 [23]    D.A. Lopez, S.N. Simison & S.R. de Sanchez, “Inhibitors performance in CO2 corrosion: EIS studies on the interaction between their molecular structure and steel microstructure”, Corrosion Science, Vol. 47, pp. 735–755, 2005.

 [24]    S. Hu, A. Guo, Y. Geng, X. Jia, S. Sun & J. Zhang, “Synergistic effect of 2-oleyl-1-oleylamidoethyl imidazoline ammonium methylsulfate and halide ions on the inhibition of mild steel in HCl”, Materials Chemistry and Physics, Vol. 134, pp. 54–60, 2012.

 [25]    T. Hong & W.P. Jepson, “Corrosion inhibitor studies in large flow loop at high temperature and high pressure”, Corrosion Science, Vol. 43, pp. 1839–1849, 2001.

 [26]    T. Hong, Y.H. Sun & W.P. Jepson, “Study on corrosion inhibitor in large pipelines under multiphase flow using EIS”, Corrosion Science, Vol. 44, pp. 101–112, 2002.

 [27]    G.W. Walter, “The application of impedance spectroscopy to study the uptake of sodium chloride solution in painted metals”, Corrosion Science, Vol. 32, pp. 1041–1058, 1991.

 [28]    M.S. Morad, “An electrochemical study on the inhibiting action of some organic phosphonium compounds on the corrosion of mild steel in aerated acid solutions”, Corrosion Science, Vol. 42, pp. 1307–1326, 2000.