بررسی و مقایسۀ رفتار خوردگی آلیاژ منیزیم AZ91 ریختگی و تغییرفرم‌یافته به‌روش اکستروژن‌برشی‌ساده

نوع مقاله: علمی-پژوهشی

نویسندگان

1 دانشیار، دانشگاه شیراز، دانشکده مهندسی، بخش مهندسی مواد و متالورژی، شیراز

2 کارشناس ارشد، دانشگاه شیراز، دانشکدۀ مهندسی، بخش مهندسی مواد و متالورژی، شیراز

چکیده

در این تحقیق اثر تغییرشکل پلاستیک شدید بر رفتارخوردگی آلیاژ منیزیم AZ91 در دمای اتاق مورد بررسی قرارگرفت. به‌همین منظور نمونه‌های ریختگی، اکستروژن‌صفحه‌ای و اکستروژن‌برشی‌ساده از این آلیاژ تهیه شد. تصاویر میکروسکوپ نوری حاکی از حذف رسوبات β در نمونۀ اکستروژن‌صفحه‌ای و تشکیل دوقلویی در نمونۀ اکستروژن‌برشی‌ساده بود. بااستفاده از آزمون‌های الکتروشیمایی در محیط کلرید سدیم% 5/3 وزنی رفتار خوردگی نمونه‌ها بررسی گردید. طیف‌سنجی امپدانس الکتروشیمیایی حاکی از جدایش لایۀ Mg(OH)2 از سطح نمونه‌ها بود. همچنین مقاومت پلاریزاسیون نمونۀ اکستروژن‌صفحه‌ای به‌دلیل حذف رسوبات β افزایش یافت، اما در نمونۀ اکستروژن برشی ساده به دلیل تشکیل دوقلویی و ایجاد رسوبات β پراکنده، مقاومت پلاریزاسیون تاحدودی کاهش یافت. آزمون تافل نیز نتایج حاصل از بررسی را تایید نمود.

کلیدواژه‌ها


[1]     A. Zafari, H. M. Ghasemi & R. Mahmudi, “An investigation on the tribological behavior of AZ91 and AZ91 + 3 wt% RE magnesium alloys at elevated temperatures”, Materials & Design, Vol. 54, pp. 544–552, 2014.

 [2]     P. Schmutz, V. Guillaumin, R. S. Lillard, J. A. Lillard & G. S. Frankel, “Influence of Dichromate Ions on Corrosion Processes on Pure Magnesium”, Journal of The Electrochemical Society, Vol. 150, pp. B99-B110, 2003.

 [3]     G. Ballerini, U. Bardi, R. Bignucolo & G. Ceraolo, “About some corrosion mechanisms of AZ91D magnesium alloy”, Corrosion Science, Vol. 47, pp. 2173–2184, 2005.

 [4]     G. Baril & N. Pébère, “The corrosion pf pure magnesium in aerated and deaerated sodium sulphate solutions”, Corrosion Science, Vol. 43, pp. 471–484, 2001.

 [5]     G. Song, A. L. Bowles & D. H. StJohn, “Corrosion resistance of aged die cast magnesium alloy AZ91D”, Material Science and Engineering A, Vol. 366, pp. 74–86, 2004.

 [6]     S. Mathieu, C. Rapin, J. Steinmetz & P. Steinmetz, “A corrosion study of the main constituent phases of AZ91 magnesium alloys”, Corrosion Science, Vol. 45, pp. 2741-2755, 2003.

[7]     Z. Shi, G. Song & A. Atrens, “Influence of anodizing current on the corrosion resistance of anodized AZ91D magnesium alloy”, Corrosion Science, Vol. 48, pp. 1939–1959, 2006.

 [8]     F. E. Heakal, A. M. Fekry & M. Z. Fatayerji, “Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions”, Electrochim Acta, Vol. 54, pp. 1545-1557, 2009.

 [9]     L. Wang, B. P. Zhang & T. Shinohara, “Corrosion behavior of AZ91 magnesium alloy in dilute NaCl solutions”, Materials and Design, Vol. 31, pp. 857–863, 2010.

 [10] G. Song, A. Atrens, X. Wu & B. Zhang, “Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride”, Corrosion Science, Vol. 40, pp. 1771-769,1998.

 [11] G. Song, A. Atrens, D.S. John, X. Wu & J. Nairn, “The anodic dissolution of magnesium in chloride and sulphate solutions”, Corrosion Science, Vol. 39, pp. 1981-2004, 1997.

 [12] H. A. beni, M. Alizadeh, M. Ghaffari & R. Amini, “Investigation of grain refinement in Al/Al2O3/B4C nano-composite produced by ARB”, Composites Part B: Engineering, Vol. 58, pp. 438–442, 2014.

 [13] D. Song, A. B. Ma, J. H. Jiang, P. H. Lin, D. H. Yang & J. F. Fan, “Corrosion behavior of bulk ultra-fine grained AZ91D magnesium alloy fabricated by equal-channel angular pressing”, Corrosion Science, Vol. 53, pp. 362-373, 2011.

 [14] R. Jahadi, M. Sedighi & H. Jahed, “ECAP effect on the micro-structure and mechanical properties of AM30 magnesium alloy”, Materials Science and Engineering: A, Vol. 593, pp. 178–184, 2014.

 [15] N. Pardis & R. Ebrahimi, “Deformation behavior in Simple Shear extrusion (SSE) as a new severe plastic deformation technique”, Materials Science and Engineering A, Vol. 527, pp. 355-360, 2009.

 [16] N. B. Tork, N. Pardis & R. Ebrahimi, “Investigation on the feasibility of room temperature plastic deformation of pure magnesium by simple shear extrusion process”, Materials Science and Engineering: A, Vol. 560, pp. 34–39, 2013.

 [17] M. Avedesian & H. Baker, ASM specialty Handbook, Magnesium and Magnesium alloy, 2nd ed, 27, ASM international,1999.

[18] Y. Miyahara, K. Matsubara, Z. Horita & T. G. Langdon, “Grain Refinement and Superplasticity in a Magnesium Alloy Processed by Equal-Channel Angular Pressing” , Metallurgical and Materials Transaction A, Vol. 36A, pp. 1705-1711, 2005.

 [19] G. Song, A. Atrens, X. Wu & B. Zhang, “Corrosion behaviour of AZ21, AZ501 and AZ91 in sodium chloride”, Corrosion Science, Vol. 40, pp. 1769-1771, 1998.

 [20] J. Chen, J. Wang, E. Han, J. Dong & W. Ke, “AC impedance spectroscopy study of the corrosion behavior of an AZ91 magnesium alloy in 0.1M sodium sulfate solution”, Electrochimica Acta, Vol. 52, pp. 3299–3309, 2007.

 [21] H. Miyamoto, K. Harada, T. Mimaki, A. Vinogradov & S. Hashimoto, “Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing”, Corrosion Science, Vol. 50, pp. 1215–1220, 2008.

 [22] N. N. Aung & W. Zhou, “Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy” , Corrosion Science, Vol. 52, pp. 589–594, 2010.