تاثیر نوع فرآیند ذوب مجدد بر ریزساختار و سختی سوپرآلیاژ پایه نیکل ریختگی IN100

نوع مقاله: علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه صنعتی مالک اشتر، تهران

2 دانشیار، دانشگاه صنعتی مالک اشتر، تهران

3 استادیار، دانشگاه صنعتی مالک اشتر، تهران

چکیده

هدف از پژوهش حاضر بررسی اثر فرآیندهای ذوب مجدد ESR (ذوب مجدد تحت سرباره الکتریکی) و VAR (ذوب مجدد تحنت خلأ با قوس الکتریکی) بر تغییرات ریزساختار و سختی سوپرآلیاژ پایه نیکل ریختگی IN100 می‌باشد. نتایج بررسی­ها بیانگر آن است که شمش VAR شده نسبت به شمش ESR شده، جدایش کمتری از عناصر Al و Ti و در نتیجه کسر حجمی کمتری از فاز یوتکتیک /γرا داراست. علاوه بر این سختی شمش VAR شده بیشتر از شمش ESR شده است که علت آن ناشی از کسر حجمی بیشتر (حدود 8 درصد) و اندازه کمتر (حدود 10 نانومتر) فاز  اولیه در شمش VAR شده است. همچنین بررسی­های ریزساختاری نشان داد که مورفولوژی و کسر حجمی فاز  ثانویه و کاربیدهای اولیه MC تحت تاثیر عملیات ذوب مجدد قرار نگرفته است.

کلیدواژه‌ها


[1]     R. C. Reed, “The Superalloy Fundamentals and Applications”, Published in the United States of America by Carnbridge University Press, New York, pp.1-25, 2006.

 [2]     B. H. Doherty & B. J. Piearcey, “Tensile and Creep Properties of the Nickel-Base Superalloy IN100”, Pub. Tran. Met. Soc. AIME, Vol. 239, pp. 1209-1215, 1967.

 [3]     [3]W. Jin, T. Li & G. Yin, “Research on IN100 Superalloy Ingots”, Science and Technology of Advanced Materials, pp.1–4, 2008.

 [4]     W. Jin, F. Bai, Ti. Li & G. Yin. “Grain Refinement of Superalloy IN100 under the Action of Rotary Magnetic Fields and Inoculants”, Materials Letters, Vol. 62, pp. 1585–1588, 2008.

 [5]     R. F. Decker, “Strengthening Mechanisms in Ni-Base Superalloy”, climax molybdenum co. Sym., Zurich, pp. 5-6, 1969.

 [6]     Firoozshahi, M. Cheraghzadeh & S. Nategh, “The Effects of Cooling Rate after Fullsolution on The Tebsile and Creep Properties a Ni base Superalloy”, Proccedings of Heattreatment and Surface Engineering, Iran, pp.125, 1995.

 [7]     M. Durand & Charre, “The Microstructure of Superalloys”, Pub. Gordon and Breach Science Publishers, pp. 19-123, 1997.

 [8]     W. E.Voice & R. G. Faulkner, “Carbide Stability in Nimonic 80A” Metal. Trans. A, Vol. 16A, pp.511-520, 1985.

 [9]     V. Krongtong, P. Tuengsook & W. Homkarajai “The Effect of Re-Heat Treatments onMicrostructural Restoration in Ni base Superalloy Turbine Blade” ActaMetallurgical Solvaca, Vol. 38, pp. 171-183, 2005.

[10] R. L. Williamson, J. J. Beaman, D. K. Melgaard, G. J. Shelmidine, & R. Morrison,“Model-Based Melt Rate Control during Vacuum Arc Remelting of Alloy 718”, Metallurgical and Materials Transactions B, Vol. 35, pp. 101-113, 2004.

[11]             A. Choudhury & Y. Hengsberger,“Electron Beam Melting and Refining of Metals and Alloys”, ISI J International, Vol. 32, pp. 673-681, 1992.

 [12] V. Schaltter, “Vacuum Induction Melting of High Temperature Alloys”, Journal of Metals.Vol. 24, pp. 17-25, 1972.

 [13] V. Schlatter, “Melting and Refining Technology of High Temperature Steels and Superalloys A Review of Recent Process Developments”, Superalloy Proceedings of the Second International Conference, Sponsored by Met. Sot. AIME, Battelle, Columbus, Ohio, MCIC-72-10, pp. 31-40, 1972.

 [14] Kh. Rahmani & S. Nategh. “Low cycle fatigue mechanism of Rene 80 at high temperature–high strain. Materials” Science and Engineering A, Vol. 494, pp. 385–390, 2008.

 [15] M. J. Donachile & S. J. Donachie,“Superalloy Metals Handbook”, desk edition, American Society of Materials international, PP. 165-203, 1999.

 [16] E. E. Brown, J. E. Stulga, L. Jennings & R. W. Salkeld, “The Influence of Vim Crucible Composition, Vacuum Arc Remelting, and Electroslag Remelting on The Non-metallic Inclusion content of Merl 76”, Superalloys, pp. 159-168, 1980.

 [17] D. A. Porter,“ Phase Transformations in Metals and Alloys”, Chapman & Hall, 1992.

 [18] C. Yang, Y. Xu, H. Nie, X. Xiao, G. Jia & Z. Shen. “Effects of Heat Treatments on the Microstructure and Mechanical Properties of Rene 80”, Materials and Design, Vol. 15, pp.66-73. 2012.