اثر افزودنی نانو اسپینل آلومینا - منیزیا بر مقاومت به هیدراتاسیون جرمهای ریختنی بدون سیمان منیزیایی

نوع مقاله: علمی-پژوهشی

نویسندگان

1 دانشجوی ارشد، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، اصفهان

2 دانشیار، دانشکده مهندسی مواد، واحد شهرضا، دانشگاه آزاد اسلامی، شهرضا، اصفهان

3 استاد، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، اصفهان

چکیده

در تحقیق حاضر، خواص نانو اسپینل آلومینا - منیزیا سنتز شده به روش سیترات - نیترات بر مقاومت به هیدراتاسیون جرمهای ریختنی بدون سیمان پایه منیزیایی مورد بررسی قرار گرفته است. بدین منظور، ابتدا اسپینل آلومینا - منیزیا نانو کریستالین با استفاده از  نیترات های فلزی آلومینیوم و منیزیم، اسید سیتریک و محلول آمونیاک تهیه گردید و سپس در دمای °C900 با نرخ گرمایش (/min °C 10) و زمان ماندگاری یک ساعت در درجه حرارت ماکزیمم تحت عملیات پخت قرار گرفت. نتایج بررسی آنالیز فازی (XRD) نشان داد که فاز اسپینل به خوبی تشکیل شده و به کمک معادله شرر اصلاح شده و میکروسکوپ الکترونی عبوری (TEM) نانواندازه بودن ذرات مورد تأیید  قرار گرفت. در ادامه، اثر نانو اسپینل آلومینا - منیزیا بر رفتار هیدراتاسیون منیزیا در جرم های ریختنی حاوی سیمان آلومینات کلسیم و آلومینای هیدراته شونده به عنوان بایندر بررسی گردید. نتایج بدست آمده از آزمون اندازه گیری PH، پراش اشعه ایکس و آنالیز ترموگراویمتری نشان داد  با استفاده از 3 درصد وزنی اسپینل نانو کریستالین آلومینا- منیزیا به همراه آلومینای هیدراته شونده (5 % وزنی)، می توان تأثیر مخرب هیدراتاسیون منیزیا را به حداقل رساند.

کلیدواژه‌ها


[1]            J. Parmentier, M. Plouet & S. Vilminot, “Influence of the sol-gel synthesis on the formation of spinel MgAl2O4”, Materials Research Bulletin, Vol. 33, No.11, pp. 1717-1724, 1998.

 [2]            J. H. Chester, “Refractories production and properties”, The Iron and Steel Institue, London, pp. 38-73, 1973.

[3]            G. M. G. Gusmano, E. Travera & A. Bearzotti, “Humidity-sensitive electrical properties of MgAl2O4 thin films”, Sens.Actuators B13/14, pp. 525-527, 1993.

 [4]            Z. Haijun, J. Xiaolin, Y. Yongjie, L. Zhanjie, Y. Daoyuan & L. Zhenzhen, “The effect of the concentration of citric acid and PH values on the preparation of MgAl2O4 ultrafine powder by citrate sol-gel process”, Materials Research Bulletin, Vol. 39, pp. 839-885, 2004.

 [5]            A. Saberi, F. Golestani-Fard, H. Sarpoolaki, M. Willert-porada, T. Gerdes & R. Simon, “Chemical synthesis of nanocrystalline magnesium aluminate spinel via nitrate-citrate combustion rout”, Journal of Alloys and Compounds, Vol. 462, pp. 142-146, 2008.

 [6]            K. Adak A, S. K. Saha & P. Pramanik,“ synthesis and characterization of MgAl2O4 spinel by PVA evaporation technique”, Journal of Material Science Letters1, pp. 6234-6235, 1997.

 [7]            S. Bhaduri, S. B. Bhaduri & K. A. Prisbrey, “Auto ignition synthesis of nano crystalline MgAl2O4 and related nano composites”, Journal of Materials Research, Vol. 14, No. 9, pp. 3571-3581, 1999.

 [8]            V. Montouillout, D. Massiot & A. Douy et al, “characterization of MgAl2O4 precursor powder prepared by aqueous route”, Journal of American Society, Vol. 82, No. 12, pp. 3299-3304, 1990.

 [9]            X. L. Pan, S. S. Sheng & G. X. Xiong et al, “Mesoporous spinel MgAl2O4 prepared by insitu modification of Boehmite sol particle surface: I synthesis and characterization of the unsupported membrances”, Colloids and Surfaces A: Physiochemical and Engineering Aspects, Vol. 179, pp. 163-169, 2001.

 [10]            K. Hayashi, S. Toyoda & H. Takebe et al, “Phase transformation of alumina derived from ammonium carbonate hydroxide (AACH)”, Journal of Ceramic Society, Vol. 99, No. 7, pp. 550-555, 1991.

 [11]            J. F. Pasquier, S. Komarneni & R. Roy,“synthesis of MgAl2O4 spinel: seeding effects on formation temperature”, Journal of Materials Science, Vol. 26, pp. 3797-3802, 1991.

 [12]            Nishikawa, “Technology of monolithic refractories”, Tech. Rept. PLIBRICO, No.33, pp. 39-44, 1984.

 [13]            G.K. Layden & G. W. Brindley, “Kinetics of vapor-phase hydration of magnesium oxide”, Journal of the American Ceramic Society, Vol. 46, pp. 518-522, 1963.

 [14]            A. Kitamura, K. Onizuka & K. Tanaka,“ Hydration characteristics of magnesia”, TaikabutsuOverseas, Vol.16, No. 3, pp. 3-11, 1995.

 [15]            R. Salomao, L. R. M. Bittencourt & V. C. Pandofelli, “Anovel approach for magnesia hydration assessment in refractory castables”, Ceramics International, Vol. 33, No. 5, pp. 803-810, 2007.

 [16]            R. Salomao & V. C. Pandofelli, “Hydration-dehydration behavior of magnesia sinter in refractory castables”, Ceramica International, Vol. 34, No.8, pp. 1829-1837, 2008.

 [17]            R. I. Razouk & R. S. Mikhail,“ The hydration of magnesia oxide from vapor phase”, Journal of Physics and Chemistry, Vol. 62, pp. 920-925, 1958.

 [18]            P. J. Anderson, R. F. Horlok & J. F. Oliver, “Interaction of water with the magnesium oxide surface”, Trans.Faraday Society, Vol. 61, No. 516, pp. 2754-2762, 1965.

 [19]            W. Feitknecht & H. Braum, “Mechanisms of hydration of magnesia Oxide in water vapor”, Helv.Chim .Acta, Vol. 50, No. 7, pp. 2040-2053, 1967.

 [20]            R. Salomao & V. C. Pandolfelli, “Magnesia sinter hydration-dehydration behavior in refractory castables”, Ceramics International, Vol. 34, pp. 1829-1834, 2008.

 [21]            P. Brandao, G. E. Goncalves & A. K. Duarte, “Mechanisms of hydration/carbonation of basic refractories –PartI”, Refract. Appl. News, Vol. 3, No. 2, pp. 6-9, 1998.

 [22]            R. S. Gordon & W. D. Kingery,“Thermal decomposition of brucite, Electron and optical microscope studies”, Journal of Amercian Ceramic Society, Vol. 49, No.12, pp. 654-660, 1966.

 [23]            V. A. Philips, H. Opperhauser & J. L. Kolbe, “Relations among particle size, shape and surface area on Mg(OH)2 and its calcinations product”, Journal of American Ceramic Society, Vol. 61, No. 1, pp. 75-81, 1978.

 [24]            J. Green, “Review: calcinations of precipitated Mg (OH) 2 to active MgO in production of refractory and chemical grade MgO”, Journal of Material Science, Vol. 18, pp. 637-651, 1983.

 [25]            M. G. Kim & U. Dahmen,“ transformations in decomposition of Mg (OH)2 and MgCO3 ”, Journal of American Society, Vol. 70, No. 3, pp. 146-154, 1987.

 [26]            R. Salomao & V. C. Pandolfelli, “The role of hydraulic binders on magnesia containing refractory castables: Calcium aluminate cement and hydratable alumina”, Ceramics International, Vol. 35, pp. 3117-3124, 2009.

 [27]            B. Sandberg & T. Mosberg, “Ceramic Transactions: Advances in Refractories Technalogy”, the American Ceramic Society, Westerwille, Ohio, Vol. 4, pp. 245-258, 1989.

 [28]            N. Bunt, C. Revais & M. Vialle, “Additives in calcium aluminate cement containing castables”, In Proceeding of the Unified International Conference on Refractories –UNITECR, New Orleans, Vol. 97 pp. 1347-1354, 1997.

 [29]            K. Ghanbari Ahari, J. H. Sharp & W. E. Lee, “Hydration of refractory oxides in castable bond system- I: alumina, magnesia and alumina-magnesia mixtures”, Journal of European Ceramic Society, Vol. 22, pp. 495-503, 2002.

 [30]        ا. منشی و س. سلطان عطار،"بکارگیری روشی نوین در اندازه گیری نانو ذرات با استفاده از رابطه شرر و پراش اشعه ایکس"، فصلنامه علمی تخصصی مهندسی مواد، سال دوم، شماره ششم، ص28-33، پائیز. 1387.

 [31]            M. A. L Braulio, L. R. M. Bittencourt & V. C. Pandolfelli, “Selection of binders for insitu spinel refractory castables”, Journal of European Ceramic Society, Vol. 29, pp. 2727-2735, 2009.

 [32]            M. Rigaud, S. Palco & N. Wang, “Spinel Formation in the MgO­-Al2O3 System Relevant to Basic Castables”, UNITECR, Kyoto, Japan, Vol. 95, pp. 387-391, 1995.