بررسی خاصیت بازدارنگی برخی از ایمیدازول‌ها به روی فلز مس به روش نظری و مقایسه آن با نتایج تجربی

نوع مقاله: علمی-پژوهشی

نویسندگان

1 استادیار، دانشکده علوم پایه، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران

2 دکتری تخصصی، دانشکده علوم پایه، دانشگاه تربیت مدرس، تهران

3 کارشناس ارشد، دانشکده علوم پایه، واحد تهران جنوب، دانشگاه آزاد اسلامی، تهران

چکیده

در این تحقیق، شاخص‌های بازدارندگی خوردگی برای ترکیبات 4-متیل 1-فنیل ایمیدازول (PMI)، 4-متیل 1-(اورتو- تولیل)-ایمیدازول (O-TMI) و -متیل 1-(پارا- تولیل)-ایمیدازول (P-TMI) روی فلز مس، در محیط خنثی و پروتونه توسط شیمی محاسباتی بررسی گردید. از روش نظریه‌ی تابع چگال (DFT) و نظریه اختلال مولر-پلست (MP2) به همراه سری‌های پایه‌ی استاندارد6-31++G* استفاده گردید. ویژگی‌هایی مانند: گاف انرژی (DE)، ممان دو قطبی(m)، الکترونگاتیوی (c)، سختی (h) و کسری الکترون‌های منتقل شده از مولکول بازدارنده به اتم فلزی (DN)، در دو حالت خنثی و پروتونه و در دو فاز محاسبه شده است. مولکول p-TMI مؤثرترین بازدارنده برای محافظت از خوردگی مس می‌باشد. در انتها همبستگی مناسبی بین مقادیر DN و نتایج به‌دست آمده از روشِ تجربی به‌دست آمد.

کلیدواژه‌ها


[1]     W. Li, Q. He, C. Pei, & B. Hou, “Experimental and theoretical investigation of the adsorption behavior of new triazole derivatives as inhibitors for mild steel corrosion in acid media,” Electrochimica Acta, Vol. 52, pp. 6386–6394, 2007.

[2]     R. M. Issa, M. K. Awad & F. M. Atlam, “Quantum chemical studies on the inhibition of corrosion of copper surface by substituted uracils”, Appl. Surf. Sci. Vol. 255, pp. 2433–2441, 2008.

[3]     P. C. Okafor & Y. Zheng, “Synergistic inhibition behaviour of of methylbenzyl quaternary imidazoline derivative and iodide ions on mild steel in H2SO4 solutions,” Corrosion Science, Vol. 51, pp. 850–859, 2009.

[4]     K. F. Khaled, “Experimental and atomistic simulation studies of corrosion inhibition of copper by a new benzotriazole derivative in acid medium”, Vol. 54, pp. 4345–4352, 2009.

[5]     E. Ebenso, H. Alemu, S. A. Umoren & I. B. Obot, “Inhibition of Mild Steel Corrosion in Sulphuric Acid Using Alizarin Yellow GG Dye and Synergistic Iodide Additive “Int. J. Electrochem. Sci. Vol. 3, pp. 1325-1333, 2008.

[6]     D. Q. Zhang, Q. R. Cai, L. X. Gao & K. Y. Lee, “Effect of serine, threonine and glutamic acid on the corrosion of copper in aerated hydrochloric acid solution,” Corrosion Science, Vol. 50, pp. 3615–3621, 2008.

[7]     S. Martinez, “Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms”, Vol. 77, pp. 97–102, 2003.

[8]     B. Gómez, N. V. Likhanova, M. A. Domínguez-Aguilar, R. Martínez-Palou, A. Vela & J. L. Gázquez, “Quantum chemical study of the inhibitive properties of 2-pyridyl-azoles,” Journal of Physical Chemistry B, Vol. 110, pp. 8928–8934, 2006.

[9]     J. Fang & J. Li, “Quantum chemistry study on the relationship between molecular structure and corrosion inhibition efficiency of amides”, J. Mol. Struct. (Theochem), Vol. 593, pp. 179-185, 2002.

[10] H. Otmacic, E. Stupnisek-Lisac & H. Takenouti, “The infuence of pH value on the effciency of imidazole based corrosion inhibitors of copper”, Corrosion Science, Vol. 52, pp. 398-405, 2010.

[11] H. P. Wang, Q. Wu, C. M. Li & N. Gu, “Copper corrosion inhibition by polyaspartic acid and imidazole”, Materials and Corrosion, Vol. 64, pp. 347–352, 2013.

[12] M. M. Antonijevic & M. B. Petrovic, “Copper Corrosion Inhibitors”. A review, Vol. 3, pp. 1-28, 2008.

[13] E. Stupnišek-Lisac, A. Gazivod & M. Madžarac, “Evaluation of non-toxic corrosion inhibitors for copper in sulphuric acid”, Electrochimica Acta, Vol. 47, pp. 4189–4194, 2002.

[14] Z. Zhang, S. Chen, Y. Li, S. Li & L. Wang, “A study of the inhibition of iron corrosion by imidazole and its derivatives self-assembled films”, Corrosion Science, Vol. 51, pp. 291–300, 2009.

[15] H. Otmacic, J. Telegdi, K. Papp & E. Stupnisek-Lisac, “Protective properties of an inhibitor layer formed on copper in neutral chloride solution”, J. Appl. Electrochem. Vol. 34, pp. 545-550, 2004.

[16] H. Otmacic & E. Stupnisek-Lisac, “Copper corrosion inhibitors in near neutral”, media, Electrochim. Acta, Vol. 48, pp. 985-991, 2003.

[17] H. Otmacic, E. Stupnisek-Lisac & H. Takenouti, “Electrochemical quartz crystal microbalance and electrochemical impedance,spectroscopy study of copper corrosion inhibition by imidazoles”, Corrosion Science Vol. 51 pp. 2342–2348, 2009

[18] N. López & F. Illas, “Ab initio modeling of the metal-support interface: the interaction of Ni, Pd, and Pt on MgO (100)”, The Journal of Physical Chemistry B, Vol.102, pp. 1430-1436 1998.

[19] T. Arslan, F. Kandemirli, E. E. Ebenso & I. Love H. Alemu, “Quantum chemical studies on the corrosion inhibition of some sulphonamides on mild steel in acidic medium”. Corrosion Science, Vol. 51, pp. 35-47, 2009.

[20] Kokalj, S. Peljhan, M. Finsgar & I. Milosev, “What Determines the Inhibition Effectiveness of ATA, BTAH, and BTAOH Corrosion Inhibitors on Copper?” Journal of the American Chemical Society, Vol. 132, pp. 16657-16668, 2010.

[21] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. Montgomery, J. A, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski & D. J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009.

[22] C. Lee, W. Yang & R. G. Parr, “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density”, Phys. Rev. B. Vol. 37, pp. 785-792, 1988.

[23] J. P. Mendes, T. L. Silva, A. J. Palace Carvalho & J. P. Prates Ramalho, “DFT studies on thiophene acetylide Ru (II) complexes for nonlinear optics: Structure–function relationships and solvent effects” J. Mol. Struct. (Theochem.), Vol. 946, pp. 33-42, 2010.

[24] M. Branca, V. Alezra, C. Kouklovsky & P. Archirel, “Accurate conformation analysis in solution: NMR and DFT/PCM study of the S - 3-(1-naphthoyl) – 4 – isopropyl - 2, 2 -dimethyloxazolidin - 5- one in CDCl3” Tetrahedron. Vol. 64, pp. 1743–1752, 2008.

[25] J Kongsted, K Aidas & KV. Mikkelsen, “On the accuracy of density functional theory to predict shifts in nuclear magnetic resonance shielding constants due to hydrogen bonding” Vol. 4, pp. 267–277, 2008.

[26] B. Z. Chowdhry, T. J. Dines, S. Jabeen & R. Withnall, “Vibrational spectra of alpha-amino acids in the zwitterionic state in aqueous solution and the solid state: DFT calculations and the influence of hydrogen bonding.” J. Phys. Chem. A. Vol. 112, pp. 10333-10347, 2008.

[27] R. G. Parr, R. A. Donnelly, M. Levy & W. E. Palke, “Electronegativity: the density functional viewpoint.” J. Chem. Phys. Vol. 68, pp. 3801-3807, 1978.

[28] R. G. Parr, R. G. Pearson & J. Am. Chem. Soc. “Absolute electronegativity and hardness correlated with molecular orbital theory” Vol. 105, pp. 7512-7516, 1983.

[29] R. G. Pearson, “Absolute Electronegativity and Hardness:Application to Inorganic Chemistry”, Inorganic Chemistry, Vol. 27 , pp. 734–740, 1988.

[30] R. G. Pearson, “Absolute electronegativity and hardness: application to inorganic chemistry” Inorg. Chem, Vol. 27, pp. 734-740, 1988.

[31] S. Martinez, “Inhibitory mechanism of mimosa tannin using molecular modeling and substitutional adsorption isotherms”, Mater. Chem. Phys, Vol. 77, pp. 97-102, 2002.