بررسی اثر افزودن گاز دی اکسید کربن به گاز محافظ بر خواص جوش در جوشکاری لیزر پالسی Nd:YAG

نوع مقاله: علمی-پژوهشی

نویسندگان

1 کارشناس ارشد، دانشگاه تربیت مدرس، گروه مهندسی مواد، تهران

2 استادیار، دانشگاه تربیت مدرس، گروه مهندسی مواد، تهران

3 دانشجوی دکتری، مرکز ملی علوم و فنون لیزر ایران، تهران

چکیده

استفاده از جوشکاری لیزری در صنایع بسیار وسیع است. نقش گاز محافظ در جوشکاری لیزر پالسی Nd:YAG با توجه به کوتاه بودن زمان ماندگاری مذاب در دماهای بالا متفاوت از نقش آن در سایر روش­های جوشکاری ذوبی معمول است. در این پژوهش اثر افزودن گاز دی­اکسید­کربن به گاز محافظ آرگون بر خواص جوش لیزری فولاد کم کربن ST14 در راستای بهبود شکل جوش و کاهش هزینه­های گاز محافظ بررسی شد. مشاهده شد افزایش درصد دی اکسید کربن در گاز محافظ موجب افزایش عمق نفوذ جوش و تشکیل فریت سوزنی در ساختار جوش می­گردد. همچنین با افزایش درصد گاز دی اکسید کربن سطح شکست جوش از شکست ترد به مخلوطی از شکست نرم و ترد تغییر می­کند. نتایج به دست امده حاکی از پتانسیل استفاده از گاز ارزان قیمت دی اکسید کربن در ترکیب گاز محافظ در جوشکاری لیزر پالسی Nd:YAG است.

کلیدواژه‌ها


[1]  M. Yasunobu, H. Koji, K. Yukihisa&  K. Junichi, “Welding Methods and Forming Characteristics of Tailored Blanks (TBs)”. NIPPON STEEL TECHNICAL REPORT, No. 88, pp. 39–43. 2003.

 [2]  D. Ashish&  V. Jyoti, “A Novel Method for Lap Welding of Automotive Sheet Steel Using High Power CW CO2 Laser”, Proceedings of the 4th International Congress on Laser Advanced Materials Processing, 2006.

 [3]  K. A. Elijah, “Principles of laser materials processing”, John Wiley & Sons, New Jersey, 2009.

 [4]  F. Malek Ghaini, M. J. Hamedi. M. J. Torkamany & J. Sabbaghzadeh, “Weld metal microstructural characteristics in pulsed Nd: YAG laser welding”. Scripta Materialia, Vol. 56, pp. 955-958, 2007.

 [5]  M. C. Collur, “Alloying element vaporization and emission spectroscopy of plasma during laser welding of stainless steels”. PhD Thesis, Pensilvania State University, 1988.

 [6]  M. Beck, P. Berger & H. Hugel, “The effect of plasma formation on beam focusing in deep penetration welding with CO2 lasers”. J. Phys. D: Appl. Phys, Vol. 28, pp. 2430- 2449, 1995.

 [7]  D. Grevey, P. Sallamand, E. Cicala & S. Ignat, “Gas protection optimization during Nd: YAG laser welding”. Optics & Laser Technology, Vol. 37, pp. 647-651, 2005.

 [8]  S. Dadras, M. J. Torkamany & J. Sabbaghzadeh, “Spectroscopic characterization of low-nickel copper welding with pulsed Nd: YAG laser”. Optics and Lasers in Engineering, Vol. 46, pp. 769– 776, 2008.

 [9]     E. Biro, D. C. Weckman & Y. Zhou, “Pulsed Nd: YAG Laser Welding of Copper Using Oxygenated Assist Gases”, Metall Mater Trans A, Vol. 33, pp. 2019–2030, 2002.

 [10] B. G. Chung, S. Rhee & C. H. Lee, “The effect of shielding gas types on CO2 laser tailored blank weldability of low carbon automotive galvanized steel”, Materials Science and Engineering,Vol. 272A, pp. 357–362, 1999.

 [11] M. Ebrahimnia, M. Goodarzi, M. Nouri & M. Sheikhi, “Study of the effect of shielding gas composition on the mechanical weld properties of steel ST 37-2 in gas metal arc welding”. Materials and Design, Vol.30, pp.3891–3895, 2009.

 [12] M. Glowacki, “The effects of the use of different shielding gas mixtures in laser welding of metals”. J. Phys. D- Appl. Phys, Vol. 28, pp. 2051-2059, 1995.

 [13] U. Reisgen, M. Schleser, O. Mokrov & E. Ahmed, “Shielding gas influences on laser weldability of tailored blanks of advanced automotive steels”. Applied Surface Science, Vol. 257, pp. 1401–1406, 2010.

 [14] Standard Methods of Tension Testing of Metallic Materials, Philadelphia: Annual Book of ASTM Standards, E. 8, Vol. 03.01, 1983.

 [15] Standard Methods for Mechanical Testing of Welds, B4.0-85. International Standard Book Number: 87171-393-4, AWS Standard, 1992.

 [16] National institute of standard and technology, http://physics.nist.gov/cigibin/atdata/lines_form [17] L.U. Shanping, F. Hidetoshi and N. Kiyoshi, "Effects of CO2  shielding gas additions and welding speed on GTA weld shape”. Journal of Materials Science, Vol. 40, pp. 2481-2485, 2005.