تحلیل اجزای محدود فرآیند سخت گردانی استحاله ای سطحی با استفاده از منبع حرارتی متحرک بهمراه اعمال استراتژی کنترل سرعت جهت کاهش مشکل عیوب در لبه ها

نوع مقاله: علمی-پژوهشی

نویسندگان

دانشگاه شیراز

چکیده

در این تحقیق، از استراتژی کنترل سرعت، در تحلیل اجزای محدود فرآیند سخت گردانی استحاله ای سطحی فولاد S355 استفاده گردیده است. استراتژی معرفی شده، که بر مبنای کنترل سرعت حرکت منبع حرارتی بر اساس میزان دمای بیشینه  موجود در سطح بنا نهاده شده است، کنترل ریز ساختار حاصل از این فرآیند را، که نتیجه دستیابی به یک تاریخچه حرارتی یکنواخت در طول مسیر پروسه است، امکان پذیر می کند. نتایج بدست آمده حاکی از آن است که استراتژی اتخاذ شده تاثیر بسزایی در دستیابی به هدف مورد نظر خواهد داشت. همچنین نتایج حاصل از شبیه سازی ها بدون استراتژی ذکر شده نشان می دهد که استفاده از ترکیبی همزمان از منبع حرارتی با ابعاد کوچکتر و توان بیشتر می تواند در غیاب این رویکرد به نتایج بهتری منجر گردد.

کلیدواژه‌ها

موضوعات


 [1]     ASM handbook, Heat Treating, ASM International , Vol. 4, p. 259, 1991.

 

[2]     N. B. Dahotre, “Surface Engineering Series”, ASM International, Materials Park, Vol. 1, p. 265, 1998.

 

[3]     N. S. Bailey, W. Tan & Y. C. Shin, “Predictive modeling and experimental results for residual stresses in laser hardening of AISI 4140 steel by a high power diode laser”, Surface and Coatings Technology, Vol. 203, pp. 2003-2012, 2009.

 

[4]     G. Tani, L. Orazi & A. Fortunato, “Prediction of hypo eutectoid steel softening due to tempering phenomena in laser surface hardening”, CIRP Annals Manufacturing Technology, Vol. 57, pp. 209–212, 2008.

 

[5]     J. Grum, Modeling of Laser Surface Hardening, In: Cemil Hakan Gür, Jiansheng Pan, editors. Handbook of thermal process modeling of steels, New York: CRC Press, pp. 499-627, 2009.

 

[6]     B. Mahmoudi, M. J. Torkamany, A. R Sabour Rouh Aghdam & J. Sabbaghzade, “Laser surface hardening of AISI 420 stainless steel treated by pulsed Nd:YAG laser”, Materials and Design, Vol. 31, pp. 2553–2560, 2010.

 

[7]     M. Kalyona & B. S. Yilbasa, “Laser pulse heating: a formulation of desired temperature at the surface”, Optics and Lasers in Engineering, Vol. 39, pp. 109–119, 2003.

 

[8]     S. A. Jenabali Jahromi, A. Khajeh & B. Mahmoudi, “Effect of different pre-heat treatment processes on the hardness of AISI 410 martensitic stainless steels surface-treated using pulsed neodymium-doped yttrium aluminum garnet laser”, Materials and Design, Vol. 34, pp. 857–862, 2012.

 

[9]     D. Rosenthal, “Mathematical theory of heat distribution during welding and cutting”, Welding Journal, Vol. 5, pp. 220s–234s, 1941.

 

[10] N. Rykalin, A. Uglov, A. Kokora & O. Glebov, Laser Machining and Welding, Mir Publishers, Moscow, 1978.

 

[11] T. W. Eagar & N. S. Tsai, “Temperature fields produced by traveling distributed heat sources”, Welding Journal, Vol. 62, pp. 346–355, 1983.

 

[12] M. F. Ashby & K. E. Easterling, “Transformation hardening of steel surfaces by laser-beams.1. Hypo-eutectoid steels”, Acta Metallurgica, Vol. 32, pp. 1935–1948, 1984.

 

[13] K. S. Bo & H. S. Cho, “Transient temperature distribution in arc welding of finite thickness plates”, Proceedings of the Institution of Mechanical Engineers, Part B: Engineering Manufacturing, Vol. 204, pp. 175–183, 1990.

 

[14] S. M. Zubair & M. A. Chaudhry, “Heat conduction in a semi-infinite solid when subjected to spatially decaying instantaneous laser source”, Heat and Mass Transfer, Vol. 28, pp. 425–431, 1993.

 

[15] M. K. Al-Adawi, M. A. Abdel-Naby & S. A. Shalaby, “Laser heating of a two-layer system with constant surface absorption: an exact solution”, Heat and Mass Transfer, Vol. 38, pp. 947–952, 1995.

 

[16] J. C. Rozzi, F. E. Pfefferkorn, F. P. Incropera & Y. C. Shin, “Transient thermal response of a rotating cylindrical silicon nitride workpiece subjected to a translating laser heat source, Part I: comparison of surface temperature measurements with theoretical results”, ASME Journal of Heat Transfer, Vol. 120, pp. 899–906, 1998.

 

[17] N. T. Nguyen, A. Otha, K. Matsuoka, N. Suzuki & Y. Maeda, “Analytic solutions for transient temperature of semi-infinite body subjected to 3-D moving heat sources”, Welding Journal, Vol. 78, 265s–274s, 1999.

 

[18] M. Van Elsen, M. Baelmans, P. Mercelis & J. P. Kruth, “Solutions for modeling moving heat sources in a semi-infinite medium and applications to laser material processing”, Heat and  Mass Transfer, Vol. 50, pp. 4872–4882, 2007.

 

[19] L. Jiang & H. L. Tsai, “Modeling of ultrashort laser pulse-train processing of metal thin films”, Heat and Mass Transfer, Vol. 50, pp. 3461–3470, 2007.

 

[20] J. Goldak, A. Chakravarti & M. Bibby, “A new finite element model for welding heat sources”, Metallurgical Transaction B, Vol. 15, pp. 299–305, 1984.

 

[21] R. I. Karlsson & B. L. Josefson, “Three dimensional finite element analysis of temperatures and stresses in a single – pass butt-welded pipe”, Pressure Vessel Technology, Vol. 112, pp. 76–84, 1990.

 

[22] R. C. Reed, H. K. D. Bhadeshia, “A simple model for multipass steel welds”, Acta Metallurgica et Materialia, Vol. 42, pp. 3663–3678, 1994.

 

[23] K. Mundra, & T. DebRoy, K. M. Kelkar, “Numerical prediction of fluid flow and heat transfer in welding with a moving heat source”, Numerical Heat Transfer, Vol. 29A, pp. 115–129, 1996.

 

[24] R. Komanduri & Z. B. Hou, “Thermal analysis of the arc welding process: Part I. General solutions”, Metallurgical and Materials Transactions B, Vol. 3, pp. 1353–1370, 2000.

 

[25] W. Jiang, K. Yahiaoui & F. R. Hall, “Finite element predictions of temperature distributions in a multipass welded piping branch junction”, Pressure Vessels Technology, Vol. 127, pp. 7–12, 2005.

 

[26] R. Patwa & Y. C. Shin, “Predictive modeling of laser hardening of AISI5150H steels”, Machine Tools and Manufufacture, Vol. 47, pp. 307–320, 2007.

 

[27] F. Kong, S. Santhanakrishnan, D. Lin & R. Kovacevic, “Modeling of temperature field and grain growth of a dual phase steel DP980 in direct diode laser heat treatment”, Materials Processing Technology, Vol. 209, pp. 5996–6003, 2009.

 

[28] G. Fribourga, A. Deschampsa. Y. Brecheta, G. Mylonasb, G. Labeasb, U. Heckenbergerc & M. Perezd, “Microstructure modifications induced by a laser surface treatment in an AA7449 aluminium alloy”, Materials Science and Engineering A, Vol. 528, pp. 2736–2747, 2011.

 

  1. Khajeh & S. A. Jenabali Jahromi, “The finite element analysis of the surface transformation hardening process using the power control strategy in order to reduce edge effect problems”, Computational Materials Science, Vol. 88, pp. 151-155, 2014.
 

  1. Li, Y. Wang, Z. Zhang, B. Han & T. Han, “Influence of overlapping ratio on hardness and residual stress distributions in multi-track laser surface melting roller steel Optics and Lasers in Engineering , Vol. 48, pp. 1224–1230, 2010.
 

[29] Chehrghania, M. J. Torkamany, M. J. Hamedi & J. Sabbaghzadeh, “Numerical modeling and experimental investigation of TiC formation on titanium surface pre-coated by graphite under pulsed laser irradiation”, Applied Surface Science, Vol. 258, pp. 2068-2076, 2012.

 

[30] W. Piekarska, M. Kubiak & A. Bokota, “Numerical simulation of thermal phenomena and phase transformations in laser-arc hybrid welded joints”, Archives of Metallurgy and Materials, Vol. 56, pp. 409-426, 2011.

 

[31] W. Piekarska, M. Kubiak & Z. Saternus, “Application of Abaqus to analysis of the temperature field in elements heated by moving heat sources”, Archives of Foundry Engineering, Vol. 10, pp. 177-182, 2010.

 

[32] J. Caron, C. Heinze, C. Schwenk, M. Rethmeier, S. S. Babu & J. Lippold, “Effect of continuous cooling transformation variations on numerical calculation of welding-induced residual stresses” Welding Research, Vol. 89, pp. s151-s160, 2010.

 

[33] W. Piekarska, M. Kubiak & Z. Saternus, “Numerical modeling of thermal and structural strain in laser welding process”. Archives of Metallurgy and Materials, Vol. 57, pp. 1219-1227, 2012.