تاثیر قرار دادن لایه نازک سیلیکون در زیر غشای دی‌الکتریک بر روی عملکرد یک میکروهیتر

نوع مقاله: علمی-پژوهشی

نویسندگان

1 محقق/دانشگاه صنعتی مالک اشتر

2 دانشیار/دانشگاه صنعتی مالک اشتر

3 استادیار/دانشگاه هوایی شهید ستاری

چکیده

با توسعه ریزفناوری میکروماشین­کاری و میکروالکترونیک، میکروهیترها کاربردهای زیادی در میکروحسگرها پیدا کرده­اند. یکنواختی توزیع دما یکی از عوامل تاثیرگذار در افزایش حساسیت و دقت یک حسگر گازی است که در آن هیتر استفاده شده است. در این مقاله روش قرار دادن لایه نازک سیلیکون در زیر غشای دی­الکتریک به منظور بهبود یکنواختی گرما در میکروهیتر، مورد بررسی قرار گرفته است. دو میکروهیتر پلاتینی با ساختار غشای معلق بر روی بستر سیلیکون و بر پایه فناوری میکروماشین­کاری حجمی طراحی، ساخته و مشخصه­یابی شده­اند. در میکروهیتر اول از لایه نازک سیلیکون به ضخامت µm10 در زیر غشای دی­الکتریک استفاده شده است در حالیکه میکروهیتر دوم بدون این لایه ساخته شده است. نتایج شبیه­سازی نشان می­دهد که با قرار دادن لایه نازک سیلیکون، یکنواختی توزیع دما و استحکام مکانیکی بهبود می­یابد درحالیکه توان مصرفی و پاسخ زمانی افزایش می­یابد. هم­­چنین نتایج تجربی به نتایج حاصل از شبیه­سازی بسیار نزدیک است و نشان می­دهد که میکروهیتر با لایه نازک سیلیکون به ضخامت µm10 برای رسیدن به دمای oC500 دارای توان مصرفی و پاسخ زمانی mW50 و ms23/4 به­ترتیب می­باشد ولی میکروهیتر ساخته شده بدون این لایه، برای رسیدن به این دما دارای توان مصرفی و پاسخ زمانی mW13 و ms4/2 است.

کلیدواژه‌ها

موضوعات


 

[1]     J. Courbat, M. Canonica, D. Teyssieux, D. Briand & N. De Rooij, “Design and fabrication of micro-hotplates made on a polyimide foil: electrothermal simulation and characterization to achieve power consumption in the low mW range”, Journal of Micromechanics and Microengineering, Vol. 21, pp. 015014, 2010.

 

[2]     C.-L. Dai, “A capacitive humidity sensor integrated with micro heater and ring oscillator circuit fabricated by CMOS–MEMS technique”, Sensors and Actuators B: Chemical, Vol. 122, pp. 375-380, 2007.

 

[3]     Elmi, S. Zampolli, E. Cozzani, F. Mancarella & G. Cardinali, “Development of ultra-low-power consumption MOX sensors with ppb-level VOC detection capabilities for emerging applications”, Sensors and Actuators B: Chemical, Vol. 135, pp. 342-351, 2008.

 

[4]     W.-J. Hwang, K.-S. Shin, J.-H. Roh, D.-S. Lee & S.-H. Choa, “Development of micro-heaters with optimized temperature compensation design for gas sensors”, Sensors, Vol. 11, pp. 2580-2591, 2011.

[5]     W. Konz, J. Hildenbrand, M. Bauersfeld, S. Hartwig, A. Lambrecht, V. Lehmann & et al, “Micromachined IR-source with excellent blackbody like behaviour”, in Proc. SPIE, pp. 540-548, 2005.

 

[6]     C. Tao, C. Yin, M. He & S. Tu, “Thermal analysis and design of a micro-hotplate for Si-substrated micro-structural gas sensor”, Proceedings of the 3rd IEEE International Conference of Nano/Micro Engineered and Molecular Systems, pp. 284-287, 2008.

 

[7]     J. Courbat, D. Briand & N. F. De Rooij, “Reliability improvement of suspended platinum-based micro-heating elements” Sensors and Actuators A: Physical, Vol. 142, pp. 284-291, 2008.

 

[8]     G.-S. Chung & J.-M. Jeong, “Fabrication of micro heaters on polycrystalline 3C-SiC suspended membranes for gas sensors and their characteristics”, Microelectronic Engineering, Vol. 87, pp. 2348-2352, 2010.

 

[9]     J. Laconte, D. Flandre & J.-P. Raskin, Micromachined thin-film sensors for SOI-CMOS co-integration, Springer, Berlin, 2006.

 

[10] J.-C. Shim & G.-S. Chung, “Fabrication and characteristics of Pt/ZnO NO sensor integrated SiC micro heater”, in Sensors IEEE, pp. 350-353, 2010.

 

[11] J. C. Belmonte, J. Puigcorbe, J. Arbiol, A. Vila, J. Morante, N. Sabate & et al, “High-temperature low-power performing micromachined suspended micro-hotplate for gas sensing applications”, Sensors and Actuators B: Chemical, Vol. 114, pp. 826-835, 2006.

 

[12] B. Guo, A. Bermak, P. C. Chan & G.-Z. Yan, “A monolithic integrated 4× 4 tin oxide gas sensor array with on-chip multiplexing and differential readout circuits”, solid-state electronics, Vol. 51, pp. 69-76, 2007.

 

[13] Hotovy, V. Rehacek, F. Mika, T. Lalinsky, S. Hascik, G. Vanko & et al, “Gallium arsenide suspended microheater for MEMS sensor arrays”, Microsystem Technologies, Vol. 14, pp. 629-635, 2008.

 

[14] D.-S. Lee, C.-H. Shim, J.-W. Lim, J.-S. Huh, D.-D. Lee & Y.-T. Kim, “A microsensor array with porous tin oxide thin films and microhotplate dangled by wires in air”, Sensors and Actuators B: Chemical, Vol. 83, pp. 250-255, 2002.

 

[15] K.-N. Lee, D.-S. Lee, S.-W. Jung, Y.-H. Jang, Y.-K. Kim & W.-K. Seong, “A high-temperature MEMS heater using suspended silicon structures”, Journal of Micromechanics and Microengineering, Vol. 19, pp. 115011, 2009.

 

[16] M. Ehmann, P. Ruther, M. von Arx & O. Paul, “Operation and short-term drift of polysilicon-heated CMOS microstructures at temperatures up to 1200 K”, Journal of micromechanics and microengineering, Vol. 11, pp. 397, 2001.

 

[17] X. Yi, J. Lai, H. Liang & X. Zhai, “Fabrication of a MEMS micro-hotplate”, in Journal of Physics: Conference Series, pp. 012098, 2011.

 

[18] T. A. Kunt, T. J. McAvoy, R. E. Cavicchi & S. Semancik, “Optimization of temperature programmed sensing for gas identification using micro-hotplate sensors”, Sensors and Actuators B: Chemical, Vol. 53, pp. 24-43, 1998.

 

[19] R. Phatthanakun, P. Deekla, W. Pummara, C. Sriphung, C. Pantong & N. Chomnawang, “Fabrication and control of thin-film aluminum microheater and nickel temperature sensor”, Proceedings of 8th International Conference of the Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp. 14-17, 2011.

 

[20] M. Aslam, C. Gregory & J. Hatfield, “Polyimide membrane for micro-heated gas sensor array”, Sensors and Actuators B: Chemical, Vol. 103, pp. 153-157, 2004.

 

[21] S. Astié, A. Gue, E. Scheid & J. Guillemet, “Design of a low power SnO< sub> 2</sub> gas sensor integrated on silicon oxynitride membrane”, Sensors and Actuators B: Chemical, Vol. 67, pp. 84-88, 2000.

 

[22] D. Briand, M. Gretillat, B. Van Der Schoot & N. De Rooij, “Thermal management of micro-hotplates using MEMCAD as simulation tool”, Power (mW), Vol. 1, pp. 5mm2, 2000.

 

[23] P. Ruther, M. Ehmann, T. Lindemann & O. Paul, “Dependence of the temperature distribution in micro hotplates on heater geometry and heating mode”, Proceedings of the 12th International Conference of Transducers, Solid-State Sensors, Actuators and Microsystems, pp. 73-76, 2003.

 

[24] J. O. Dennis, A. Y. Ahmed & N. M. Mohamad, “Design, Simulation and Modeling of a Micromachined High Temperature Microhotplate for Application in Trace Gas Detection”, International Journal of Engineering and Technology, Vol. 10, pp. 89-96, 2010.

 

[25] O. Sidek, M. Ishak, M. Khalid, M. Abu Bakar & M. Miskam, “Effect of heater geometry on the high temperature distribution on a MEMS micro-hotplate”, Proceedings of the 3rd Asia Symposium of Quality Electronic Design (ASQED), pp. 100-104, 2011.

 

[26]    ف. سمائی­فر، ح. حاج قاسم، م. محتشمی­فر، م. رض. علی ­احمدی، "طراحی و شبیه­سازی میکروهیتر ساخته شده با تکنولوژی MEMS"، مجله صنایع الکترونیک، دوره 3، شماره4، ص. 95-111، زمستان 1391.

 

Mayadas & M. Shatzkes, “Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surfaces”, Physical review B, Vol. 1, pp. 1382, 1970.