[1] S. R. Paital & N. B. Dahotre, “Calcium phosphate coatings for bio-implant applications: Materials , performance factors , and methodologies”, Scanning, Vol. 66, pp. 1-70, 2009.
[2] Y. h. Jeong, H. c. Choe, W. A. Brantley & I. b. Sohn, “Surface & Coatings Technology Hydroxyapatite thin film coatings on nanotube-formed Ti – 35Nb – 10Zr alloys after femtosecond laser texturing”, Surface & Coatings Technology, 2012.
[3] X. Zhang, Q. Li, L. Li, P. Zhang, Z. Wang & F. Chen, “Fabrication of hydroxyapatite / stearic acid composite coating and corrosion behavior of coated magnesium alloy”, Materials Letters, Vol. 88, pp. 76-78, 2012.
[4] H. Farnoush, A. Abdi Bastami, A. Sadeghi, J. Aghazadeh Mohandesi & F. Moztarzadeh, “Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 20, pp. 90-97, 2013.
[5] A. Kobayashi & B. Subramanian, “Hydroxyapatite and YSZ reinforced hydroxyapatite coatings by gas tunnel type plasma spraying” pp. 213-216, 2013.
[6] M. Mittal, S. K. Nath & S. Prakash, “Improvement in mechanical properties of plasma sprayed hydroxyapatite coatings by Al2O3 reinforcement”, Materials Science and Engineering, Vol. 33C, pp. 2838-2845, 2013.
[7] B. Pateyron, L. Pawłowski, N. Calve, G. Delluc & A. Denoirjean, “Modeling of phenomena occurring in plasma jet during suspension spraying of hydroxyapatite coatings”, Surface and Coatings Technology, Vol. 214, pp. 86-90, 2013.
[8] Y. C. Yang & C. Y. Yang, “Mechanical and histological evaluation of a plasma sprayed hydroxyapatite coating on a titanium bond coat”, Ceramics International, Vol. 39, pp. 6509-6516, 2013.
[9] S. Adibnia, A. Nemati, M. H. Fathi & S. Baghshahi, “Synthesis and characterization of sol-gel derived Hydroxyapatite- Bioglass composite nanopowders for biomedical applications”, Tissue Engineering, Vol. 12, pp. 51-57, 2012.
[10] A. Yelten, S. Yilmaz & F. N. Oktar, “Sol – gel derived alumina – hydroxyapatite – tricalcium phosphate porous composite powders”, Ceramics International, Vol. 38, pp. 2659-2665, 2012.
[11] A. Abdi Bastami, H. Farnoush, A. Sadeghi & J. Aghazadeh Mohandesi, “Sol–gel derived nanohydroxyapatite film on friction stir processed Ti–6Al–4V substrate”, Surface Engineering, Vol. 29, pp. 205-210, 2013.
[12] H. Farnoush, J. A. Mohandesi & D. H. Fatmehsari, “Effect of particle size on the electrophoretic deposition of hydroxyapatite coatings: A kinetic study based on a statistical analysis”, International Journal of Applied Ceramic Technology, Vol. 10, pp. 87-96, 2013.
[13] H. Farnoush, J. Aghazadeh Mohandesi, D. Haghshenas Fatmehsari & F. Moztarzadeh, “Modification of electrophoretically deposited nano-hydroxyapatite coatings by wire brushing on Ti–6Al–4V substrates”, Ceramics International, Vol. 38, pp. 4885-4893, 2012.
[14] H. Farnoush, J. Aghazadeh Mohandesi, D. Haghshenas Fatmehsari & F. Moztarzadeh, “A kinetic study on the electrophoretic deposition of hydroxyapatite–titania nanocomposite based on a statistical approach”, Ceramics International, Vol. 38, pp. 6753-6767, 2012.
[15] H. Farnoush, A. Sadeghi, A. Abdi Bastami, F. Moztarzadeh & J. Aghazadeh Mohandesi, “An innovative fabrication of nano-HA coatings on Ti-CaP nanocomposite layer using a combination of friction stir processing and electrophoretic deposition”, Ceramics International, Vol. 39, pp. 1477-1483, 2013.
[16] C. Gu, Q. Fu, H. Li, J. Lu & L. Zhang, “Study on special morphology hydroxyapatite bioactive coating by electrochemical deposition”, pp. 256-260, 2013.
[17] D. H. Li, J. Lin, D. Y. Lin & X. X. Wang, “Synthesis and charaterization of silicon-substituted hydroxyapatite coating by electrochemical deposition on Ti substrate”, Chinese Journal of Inorganic Chemistry, Vol. 27, pp. 1027-1032, 2011.
[18] D. H. Li, J. Lin, D. Y. Lin & X. X. Wang, “Synthesized silicon-substituted hydroxyapatite coating on titanium substrate by electrochemical deposition”, Journal of Materials Science: Materials in Medicine, Vol. 22, pp. 1205-1211, 2011.
[19] X. Lu, B. Zhang, Y. Wang, X. Zhou, J. Weng, S. Qu, B. Feng, F. Watari, Y. Ding & Y. Leng, “Nano-Ag-loaded hydroxyapatite coatings on titanium surfaces by electrochemical deposition”, Journal of the Royal Society Interface, Vol. 8, pp. 529-539, 2011.
[20] Y. Wang, X. Lu, D. Li, B. Feng, S. Qu & J. Weng, “Hydroxyapatite/chitosan composite coatings on titanium surfaces by pulsed electrochemical deposition”, Acta Polymerica Sinica, Vol. pp. 1244-1252, 2011.
[21] B. Antebi, X. Cheng, J. N. Harris, L. B. Gower, X. D. Chen & J. Ling, “Biomimetic collagen-hydroxyapatite composite fabricated via a novel perfusion-flow mineralization technique”, Tissue Engineering - Part C: Methods, Vol. 19, pp. 487-496, 2013.
[22] Q. Cai, Q. Feng, H. Liu & X. Yang, “Preparation of biomimetic hydroxyapatite by biomineralization and calcination using poly(l-lactide)/gelatin composite fibrous mat as template”, Materials Letters, Vol. 91, pp. 275-278, 2013.
[23] G. Ciobanu & O. Ciobanu, “Investigation on the effect of collagen and vitamins on biomimetic hydroxyapatite coating formation on titanium surfaces”, Materials Science and Engineering, Vol. 33C, pp. 1683-1688, 2013.
[24] H. Deplaine, M. Lebourg, P. Ripalda, A. Vidaurre, P. Sanz-Ramos, G. Mora, F. Prõsper, I. Ochoa, M. Doblaré, J. L. Gõmez Ribelles, I. Izal-Azcárate & G. Gallego Ferrer, “Biomimetic hydroxyapatite coating on pore walls improves osteointegration of poly(L-lactic acid) scaffolds”, Journal of Biomedical Materials Research - Part B Applied Biomaterials, Vol. 101 B, pp. 173-186, 2013.
[25] F. Peng, M. T. Shaw, J. R. Olson & M. Wei, “Influence of surface treatment and biomimetic hydroxyapatite coating on the mechanical properties of hydroxyapatite/poly(L-lactic acid) fibers”, Journal of Biomaterials Applications, Vol. 27, pp. 641-649, 2013.
[26] M. Wu, Q. Wang, X. Liu & H. Liu, “Biomimetic synthesis and characterization of carbon nanofiber/ hydroxyapatite composite scaffolds”, Carbon, Vol. 51, pp. 335-345, 2013.
[27] H. Farnoush, F. Muhaffel & H. Cimenoglu, “Fabrication and characterization of nano-HA-45S5 bioglass composite coatings on calcium-phosphate containing micro-arc oxidized CP-Ti substrates”, Applied Surface Science, Vol. 324, pp. 765-774, 2015.
[28] L. Mohan, D. Durgalakshmi, M. Geetha, T. S. N. S. Narayanan & R. Asokamani, “Electrophoretic deposition of nanocomposite ( HAp + TiO 2 ) on titanium alloy for biomedical applications”, Ceramics International, Vol. 38, pp. 3435-3443, 2012.
[29] M. Sadat-shojai, M. t. Khorasani, E. Dinpanah-khoshdargi & A. Jamshidi, “Acta Biomaterialia Synthesis methods for nanosized hydroxyapatite with diverse structures”, Acta Biomaterialia, Vol. pp., 2013.
[30] R. M. Trommer, L. A. Santos & C. P. Bergmann, “Alternative technique for hydroxyapatite coatings”, Vol. 201, pp. 9587-9593, 2007.
[31] Y. Yang, K. h. Kim & J. L. Ong, “A review on calcium phosphate coatings produced using a sputtering process — an alternative to plasma spraying”, Science, Vol. 26, pp. 327-337, 2005.
[32] A. R. Boccaccini, S. Keim, R. Ma, Y. Li & I. Zhitomirsky, “Electrophoretic deposition of biomaterials”, Journal of the Royal Society, Interface / the Royal Society, Vol. 7, Suppl 5, pp. S581-613, 2010.
[33] M. Wei, A. J. Ruys, M. V. Swain, B. K. Milthorpe & C. C. Sorrell, “Hydroxyapatite-coated metals : Interfacial reactions during sintering”, Vol. 6, pp. 101-106, 2006.
[34] V. Cannillo, L. Lusvarghi & A. Sola, “Production and characterization of plasma-sprayed TiO 2 – hydroxyapatite functionally graded coatings”, Journal of the European Ceramic Society, Vol. 28, pp. 2161-2169, 2008.
[35] H. Zhou & J. Lee, “Nanoscale hydroxyapatite particles for bone tissue engineering”, Acta biomaterialia, Vol. 7, pp. 2769-2781, 2011.
[36] S. V. Dorozhkin, “Nanosized and nanocrystalline calcium orthophosphates”, Acta biomaterialia, Vol. 6, pp. 715-734, 2010.
[37] S. F. Ou, S. Y. Chiou & K. L. Ou, “Phase transformation on hydroxyapatite decomposition”, Ceramics International, Vol. 39, pp. 3809-3816, 2013.
[38] T. Wang, A. Dorner-reisel & E. Mu, “Thermogravimetric and thermokinetic investigation of the dehydroxylation of a hydroxyapatite powder”, Vol. 24, pp. 693-698, 2004.
[39] M. Gaona, R. S. Lima & B. R. Marple, “Nanostructured titania / hydroxyapatite composite coatings deposited by high velocity oxy-fuel ( HVOF ) spraying”, Materials Science and Engineering, Vol. 458A, pp. 141-149, 2007.
[40] W. Que, K. A. Khor, J. L. Xu & L. G. Yu, “Hydroxyapatite / titania nanocomposites derived by combining high-energy ball milling with spark plasma sintering processes”, Materials Research, Vol. 28, pp. 3083-3090, 2008.
[41] S. Bose & S. Tarafder, “Acta Biomaterialia Calcium phosphate ceramic systems in growth factor and drug delivery for bone tissue engineering : A review”, Acta Biomaterialia, Vol. 8, pp. 1401-1421, 2012.
[42] S. V. Dorozhkin, “Bioceramics of calcium orthophosphates”, Biomaterials, Vol. 31, pp. 1465-1485, 2010.
[43] R. G. Carrodeguas & S. D. Aza, “Acta Biomaterialia a -Tricalcium phosphate : Synthesis , properties and biomedical applications”, Acta Biomaterialia, Vol. 7, pp. 3536-3546, 2011.
[44] T. Laonapakul, A. Rakngarm & Y. Otsuka, “Failure behavior of plasma-sprayed HAp coating on commercially pure titanium substrate in simulated body fluid ( SBF ) under bending load”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 15, pp. 153-166, 2012.
[45] C. T. Kwok, P. K. Wong, F. T. Cheng& H. C. Man, “Applied Surface Science Characterization and corrosion behavior of hydroxyapatite coatings on Ti6Al4V fabricated by electrophoretic deposition”, Applied Surface Science, Vol. 255, pp. 6736-6744, 2009.
[46] H. Farnoush, A. Abdi, A. Sadeghi, J. Aghazadeh & F. Moztarzadeh, “Tribological and corrosion behavior of friction stir processed Ti-CaP nanocomposites in simulated body fluid solution”, Journal of the Mechanical Behavior of Biomedical Materials, Vol. 20, pp. 90-97, 2013.
[47] X. B. Zheng & C. X. Ding, “Characterization of plasma-sprayed hydroxyapatite/TiO2 composite coatings”, Journal of Thermal Spray Technology, Vol. 9, pp. 520-525, 2000.
[48] X. F. Xiao, R. F. Liu & X. L. Tang, “Electrophoretic deposition of silicon substituted hydroxyapatite coatings from n-butanol-chloroform mixture”, Journal of Materials Science: Materials in Medicine, Vol. 19, pp. 175-182, 2008.
[49] X. F. Xiao, R. F. Liu & Y. Z. Zheng, “Characterization of hydroxyapatite / titania composite coatings codeposited by a hydrothermal – electrochemical method on titanium”, Surface & Coatings Technology, Vol. 200, pp. 4406-4413, 2006.
[50] A. L. G. M. Stern, “Electrochemical polarization: I. A theoretical analysis of the shape of polarization curves”, Journal of The Electrochemical Society, Vol. 104, pp. 56-63, 1957.
[51] Y. Gu, S. Bandopadhyay, C. F. Chen, Y. Guo & C. Ning, “Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31 magnesium alloys in simulated body fluid”, Journal of Alloys and Compounds, Vol. 543, pp. 109-117, 2012.
[52] M. Mehdipour, A. Afshar & M. Mohebali, “Applied Surface Science Electrophoretic deposition of bioactive glass coating on 316L stainless steel and electrochemical behavior study”, Applied Surface Science, Vol. 258, pp. 9832-9839, 2012.
[53] Y. W. Gu, K. A. Khor, D. Pan & P. Cheang, “Activity of plasma sprayed yttria stabilized zirconia reinforced hydroxyapatite / Ti – 6Al – 4V composite coatings in simulated body fluid”, Biomaterials, Vol. 25, pp. 3177-3185, 2004.
[54] X. Lu & Y. L. Ã, “Theoretical analysis of calcium phosphate precipitation in simulated body fluid”, Biomaterials, Vol. 26, pp. 1097-1108, 2005.
[55] C. E. Wen, “Hydroxyapatite / titania sol – gel coatings on titanium – zirconium alloy for biomedical applications q”, Acta Biomaterialia, Vol. 3, pp. 403-410, 2007.
[56] B. Zhang & C. Tat, “Hydroxyapatite-anatase-carbon nanotube nanocomposite coatings fabricated by electrophoretic codeposition for biomedical applications”, Journal of Materials, Vol. pp. 2249-2259, 2011.
[57] H. C. Man, K. Y. Chiu, F. T. Cheng & K. H. Wong, “Adhesion study of pulsed laser deposited hydroxyapatite coating on laser surface nitrided titanium”, Thin Solid Films, Vol. 517, pp. 5496-5501, 2009.
[58] C. Kim, M. R. Kendall, M. A. Miller, C. L. Long, P. R. Larson, M. Beth, A. S. Madden & A. C. Tas, “Comparison of titanium soaked in 5 M NaOH or 5 M KOH solutions”, Materials Science & Engineering C, Vol. 33, pp. 327-339, 2013.
[59] Y. Yuan & T. R. Lee, “Contact Angle and Wetting Properties”, in: G. Bracco, B. Holst (Eds.) Surface Science Techniques, Springer Berlin Heidelberg, pp. 3-34, 2013.
[60] T. Sun & M. Wang, “Applied Surface Science Low-temperature biomimetic formation of apatite / TiO 2 composite coatings on Ti and NiTi shape memory alloy and their characterization”, Vol. 255, pp. 396-400, 2008.
[61] O. Yamamoto, K. Alvarez, T. Kikuchi & M. Fukuda, “Fabrication and characterization of oxygen-diffused titanium for biomedical applications”, Acta Biomaterialia, Vol. 5, pp. 3605-3615, 2009.