[1] K. Máthis, Z. Trojanová, P. Lukáč, C. H. Cáceres, & J. Lendvai, “Modeling of hardening and softening processes in Mg alloys”, Journal of Alloys and Compounds, Vol. 378, pp. 176-179, 2004.
[2] B. L. Mordike & T. Ebert, “Magnesium Properties - applications - potential”, Materials Science and Engineering, Vol. 302A, pp. 37-45, 2001.
[3] D. L. Atwell, M. R. Barnett & W. B. Hutchinson, “The effect of initial grain size and temperature on the tensile properties of magnesium alloy AZ31 sheet”, Materials Science and Engineering, Vol. 549A, pp. 1-6, 2012.
[4] Weisheit, R. Galun & B. L. Mordike, “CO2 laser beam welding of magnesium-based alloys”, Welding Journal, Vol. 77, pp. 148-154, 1998.
[5] L. Ceschini, I. Boromei, G. Minak, A. Morri & F. Tarterini, “Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3 composite”, Compos. Sci.Technol, Vol. 67, pp. 605–615, 2007.
[6] Ellis MBD, “Joining of aluminium based metal matrix composites”, Int Mater Rev, Vol. 41, No. 2, pp. 41–58, 1996.
[7] م. صفرخانیان، م. گودرزی و س. م. بوترابی، "مکانیزم تشکیل دانه ها در منطقه ی اختلاط حین جوشکاری اصطکاکی اختلاطی (FSW) و بررسی اثر سرعت دورانی ابزار و سرعت جوشکاری بر اندازه دانه ها"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال ششم، شماره 2، تابستان 1391.
[8] ر. بازرگان لاری و ا. وفا، "مقایسه رفتار خوردگی آلیاژ آلومینیوم 6061 جوش داده شده به روش FSLW و GTALW"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال دهم، شماره 2، تابستان 1395.
[9] M. Srinivasan, C. Loganathan, V. Balasubramanian, Q. B. Nguyen, M. Gupta & R. Narayanasamy, “Feasibility of joining AZ31B magnesium metal matrix composite by friction welding”, Materials & Design, Vol. 32, pp.1672-1676, 2011.
[10] W. B. Lee, C.Y. Lee, M. K. Kim, J. Yoon, Y. J. Kim, Y. M. Yoen & S. B. Jung, “Microstructures and wear property of friction stir welded AZ91 Mg/SiC particle reinforced composite”, Composites Science and Technology. Vol. 66, pp. 1513–1520, 2006.
[11] S. Gopalakrishnan & N. Murugan, “Prediction of tensile strength of friction stir welded aluminium matrix TiC particulate reinforced composite”, Materials & Design, Vol. 32, pp. 462–467, 2011.
[12] م. سلیمانی، س. ف. کاشانی بزرگ و ع. م. هادیان، " ارزیابی سایشی لایه سطحی نانوکامپوزیت هیبریدیAl7075/SiC-BN تشکیل شده توسط روش همزن اصطکاکی"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال دهم، شماره 1، بهار 1395.
[13] م. مسائلی و ک. امینی، "بررسی سختی و رفتار تریبولوژیکی نانوکامپوزیت سطحی Al/Al2O3-TiB2 ساخته شده با فرآوری همزن اصطکاکی"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال دهم، شماره 1، بهار 1395.
[14] Y. Morisada, H. Fujii, T. Nagaoka & M. Fukusumi, “Effect of friction stir processing with SiC particles on microstructure and hardness of AZ31”, Materials Science and Engineering, Vol. 433A, pp. 50-54, 2006.
[15] M. Barmouz, P. Asadi, MK. Besharati Givi & M. Taherishargh, “Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles’ size and volume fraction”, Mater. Sci. Eng, Vol. 528A, pp. 1740–1749, 2011.
[16] Y. Morisada, H. Fujii, T. Nagaoka & M. Fukusumi, “MWCNTs/AZ31 surface composites fabricated by friction stir processing”, Materials Science and Engineering, Vol. 419A, pp. 344-348, 2006.
[17] M. Azizieh, A. H. Kokabi & P. Abachi, “Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing”, Materials & Design, Vol. 32, pp. 2034-2041, 2011.
[18] D. Khayyamin, A. Mostafapour & R. Keshmiri, “The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP”, Materials Science and Engineering, Vol. 559A, pp. 217-221, 2013.
[19] YF. Sun & H. Fujii, “The effect of SiC particles on the microstructure and mechanical properties of friction stir welded pure copper joints”, Mater. Sci. Eng, Vol. 528A, pp. 5470–5475, 2011.
[20] M. Bahrami, K. Dehghani & M. K. Besharati Givi, “A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique”, Materials & Design, Vol. 53, pp. 217-225, 2013.
[21] M. Bahrami, M. K. Besharati Givi, K. Dehghani & N. Parvin, “A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique”, Materials and Design, Vol. 53, pp. 519–527, 2014.
[22] D. Khayyaminn, A. Mostafapour & R. Keshmiri, “The effect of process parameters on microstructural characteristics of AZ91/SiO2 composite fabricated by FSP”, Materials Science & Engineering, Vol. 559A, pp. 217–221, 2013.
[23] L. Commin, J. E. Masse & L. Barrallier, “Friction stir welding of AZ31 magnesium alloy rolled sheets: Influence of processing parameters”, Acta Materialia, Vol. 59, pp. 326–334, 2009.
[24] P. Asadi, G. Faraji & M. K. Besharati, “Producing of AZ91/SiC composite by friction stir processing (FSP)”, Int J Adv Manuf Technol, Vol. 51, pp. 247-260, 2010.
[25] H. Ye & X. Liu, “Review of recent studies in magnesium matrix composites”, Jornal of Materials Science, Vol. 39, pp. 6153-6171, 2004.
[26] G. Ellwood Dieter, “Mechanical metallurgy”, 3rd ed, McGraw-Hill, Michigan, 1986.
[27] L. commin, M. Dumont, R. Rotinat, F. Pierron, J. Masse & L. Barrallier, “Influence of the microstructural changes and induced residual stresses on tensile properties of wrought magnesium alloy friction stir welds”, Materials Science and Engineering, Vol.551A, pp. 288– 292, 2012.
[28] R. S. Mishra & Z. Y. Ma, “Friction stir welding and processing”, Mater Sci Eng R, Vol. 50, pp. 1-78, 2005.
[29] W. B. Lee, C. Y. Lee, M. K. Kim, J. Yoon, Y. J. Kim, Y. M. Yoem & S. B. Jung, “Microstructures and wear property of friction stir welded AZ91 Mg/SiC particle reinforced composite”, Composites Science and Technology, Vol. 66, pp. 1513-1520, 2006.
[30] Gh. Faraji & P. Asadi, “Characterization of AZ91/alumina nano-composite produced by FSP”, Materials Science and Engineering, Vol. 528A, pp. 2431-2440, 2011.
[31] M. Abbasi Gharacheh, A. H. Kokabi, G. H. Daneshi, B. Shalchi & R. Sarrafi, “The influence of the ratio of rotational speed/traverse speed on mechanical properties of AZ31 friction stir welds”, Machine Tools and Manufacture, Vol. 46, pp. 1983-1987, 2006.