اعمال پوشش نانو کامپوزیتی Ni-B-Zro2 به روش الکترولس بر روی فولاد CK45 و بررسی خواص تریبولوژیکی آن

نوع مقاله: علمی-پژوهشی

نویسندگان

1 دانشجوی دانشگاه آزاد واحد مرودشت

2 استادیار، گروه مهندسی مواد دانشکده مهندسی، دانشگاه آزاد اسلامی، مرودشت، ایران

چکیده

پوشش الکترولس نیکل – بور معمولاً به دلیل مقاومت به سایش و خوردگی خوبی که دارد مورد توجه است. الکترولس نیکل – بور از طریق احیا شیمیایی کنترل شده یون نیکل روی سطح کاتالیتیک ایجاد می گردد و تا وقتی که سطح با محلول در تماس است واکنش ادامه می یابد. در این پژوهش پوشش نانو کامپوزیتیNi-B-ZrO2 با افزودن 4 گرم بر لیتر نانو ذرات ZrO2 در محلول الکترولس نیکل – بور بر روی نمونه هایی از جنس فولاد CK45 ایجاد گردید ؛ سپس نمونه ها ی پوشش داده شده تحت عملیات حرارتی به مدت یک ساعت در دمای 400 قرار گرفتند. مورفولوژی و ترکیب شیمیایی پوشش با استفاده از آنالیز میکروسکوپ الکترونی روبشی (SEM) مجهز به EDX مورد بررسی قرار گرفت. رفتار خوردگی الکتروشیمیایی پوشش ها در محلول 3.5 درصد وزنی NaCl نشان داد که با اضافه کردن نانو ذرات ZrO2 مقاومت به خوردگی پوشش ها بهبود می یابد. طیف نگاری امپدانس الکتروشیمیایی نشان داد که پوشش ها پس از عملیات حرارتی اثر حفاظتی نداشته و زیرلایه به شدت در معرض خوردگی قرار می گیرد. رفتار سایشی پوشش ها بوسیله آزمون پین بر روی دیسک در دمای محیط و سختی آنها بوسیله دستگاه ریزسختی سنجی ویکرز اندازه گیری شد. نتایج نشان داد اضافه کردن نانو ذرات زیرکونیا باعث افزایش سختی و مقاومت به سایش پوشش می گردد. پوشش نمونه های کامپوزیتی نیکل – بور – زیرکونیا بدون عملیات حرارتی بهترین نتیجه همزمان برای سه پارامتر سختی بالا، مقاومت به سایش خوب و مقاومت به خوردگی عالی را داشت.

کلیدواژه‌ها

موضوعات


 [1]       ج. گلاب و م. علیشاهی، "بهینه سازی عملیات حرارتی پوشش الکترولس Ni-P به کمک روش شناسی سطح پاسخ با هدف بهبود همزمان سختی و رفتار خوردگی"، فصلنامه علمی‌پژوهشی فرآیندهای نوین در مهندسی مواد شهر مجلسی، سال دهم، شماره اول، ص 197-206، بهار 1395.

 

[2]     W. Riedel, Electro less Plating, ASM International, Ohio, 1991.

 

[3]     Yancy W. Riddle, “Nickel-Boride (Ni3B) Plating”, UCT Coatings, ASM Metals HandBook, Vol. 5, 2005.

 

[4]     J. Park, “Bio ceramics: Properties, Characterizations, and Applications”, Springer, USA, 2008.

 

[5]     E. W. Brooman & Sh. L. Toepke, “BACKGROUND PAPER ON AEROSPACE & MISSILE NEEDS”, RDT&E Needs for the Metal Surface, Vol. 105, 2011

 

[6]     M. Anik, E. Körpe & E. Şen “Effect of coating bath composition on the properties of electro less nickel– boron films”, Surface & Coatings Technology, Vol. 202, pp. 1718–1727, 2008

 

[7]     K. Zielinska & A. Stankiewicz, “Electro less deposition of Ni-P-Zro2 Composite Coatings in the presence of various types of surfactants”, Journal of Colloid and Interface Science, Vol. 377, 2012.

 

[8]     World Wide Web page (no author), Zirconium Oxide (ZrO2) Nano powder / Nanoparticles Dispersion[online], Available from: URL:http://www.usnano.com/inc/sdetail/939, Accessed Sep, Vol. 12, 2016.

 

[9]       م، طاهری، ع. سالمی‌گلعذانی و ک. شیروانی، " تأثیر پوشش آلومینایدی بر رفتار خزشی سوپر آلیاژ پایه نیکلی GTD-111"، مجله مواد نوین مرودشت، شماره3، ص 68-61، بهار 1391.

 

[10]    م. بیدرام، ک. امینی، ع. شفیعی و م. بینا،" ایجاد پوشش کامپوزیتی نیکل- بور – کاربید تنگستن نانوکریستالی به روش الکترولس و بررسی خواص تریبولوژیکی آن"، فصلنامه علمی‌پژوهشی فرآیندهای نوین در مهندسی مواد شهر مجلسی، سال هفتم، شماره دوم، ص 23-17، تابستان1392.

 

[11] F. Delaunois, J. P. Petitjean, P. Lienard & M. Jacob-Duliere, “Autocatalytic electroless nickel-boron plating on light alloys”, Surface and Coatings Technology, Vol. 124, 2000.

 

[12] Baskaran, R. Sakthi Kumar, T. Sankara Narayanan & A. Stephen, “Formation of electro less Ni–B coatings using low temperature bath and evaluation of their characteristic propertiesˮ, Surf. Coat. Technol, Vol. 200, 2006.

 

[13] H. Hassan & Z. A. Hamid, “Electro less Ni–B supported on carbon for direct alcohol fuel cell applicationsˮ, Int. J. Hydrogen Energy, Vol. 36, 2011

 

[14] J. N. Balaraju & K. S. Rajam, “Electro less Deposition and Characterization of High Phosphorus Ni-PSi3N4 Composite Coatings”, International Journal of Electrochemical Society, Vol. 2, 2007.

 

[15] S. K. Das & P. Sahoo, “Influence of process parameters on micro hardness of electro less Ni–B coatingsˮ, Adv. Mech. Eng., 2012.

 

[16] T. Biestek, “Electro less Nickel Coatings: Testing of Corrosion and Wear Resistance”, Galvanotechnic, Vol. 88, No. 5, 1997.

 

[17] Z. A. Hamid, H. Hassan & A. Attyia, “Influence of deposition temperature and heat treatment on the performance of electro less Ni–B filmsˮ, Surf. Coat. Technol, Vol. 205, 2010

 

[18] T. Sankara Narayanan & S. Seshadri, “Formation and characterization of borohydride reduced electro less nickel depositsˮ, J. Alloys Comp, Vol. 365, 2004.

 

[19] J. Novakovic & P. Vassiliou, “Vacuum thermal treated electro less NiP–TiO2 composite coatingsˮ, Electro him. Acta, Vol. 54, 2009.

 

[20] S. Ranganatha, T. Venkatesha & K. Vathsala, “Development of electro less Ni–Zn–P/nano-TiO2 composite coatings and their propertiesˮ, Appl. Surf. Sci, Vol. 256, 2010.

 

[21] M. Momenzadeh & S. Sanjabi, “The effect of TiO2 nanoparticle code position on microstructure and corrosion resistance of electro less Ni–P coatingˮ, Mater. Corros, Vol. 63, 2012.