ﺑﺮرﺳﯽ تأثیر‬ ﭘﺎراﻣﺘﺮﻫﺎی ماشین‌کاری تخلیه‌الکتریکی، بر روی ماده مرکب پایه آلومینیوم 2024 با استفاده از تحلیل مقدار کل نرمال شده پارامترها (TNQL) و نسبت سیگنال به نویز (S/N)

نوع مقاله: علمی-پژوهشی

نویسندگان

1 کارشناس ارشد مکانیک ساخت و تولید، اصفهان، دانشگاه آزاد اسلامی واحد خمینی شهر، دانشکده فنی و مهندسی

2 دانشگاه آزاد اسلامی،واحد شهر مجلسی،دانشگاه مهندسی مکانیک، اصفهان، ایران

چکیده

مواد مرکب زمینه فلزی با توجه به نوع تقویت کننده قابلیت ماشینکاری متفاوتی دارند. ماده مرکب الومینیوم 2024 تقویت شده با اکسید آلومینیوم از جمله موادی می باشد که ماشینکاری آن به روش های سنتی فرسایش سریع ابزار را در پی دارد. این روش ماشینکاری دارای پارامترهای مختلفی می باشد. تنظیم بهینه پارامتر های ماشینکاری بر زمان، کیفیت محصول و سایش ابزار اثر مهمی دارد. در این تحقیق با استفاده از تحلیل مقدار کل نرمال شده پارامترها (TNQL) و نسبت سیگنال به نویز (S/N) همزمان خروجی‌ها به بررسی تاثیر پارانترهای ورودی ماشینکاری تخلیه الکتریکی شامل شدت جریان، ولتاژ، زمان روشنی و خاموشی پالس بر نرخ براده برداری، سایش ابزار و زبری سطح در حالت بدون پودر و پودر و دوران ابزار پرداخته شده است. نتایج نشان داد که شدت جریان بیشترین و بعد از آن زمان روشنی، زمان خاموشی پالس و در آخر ولتاژ مهمترین اثر را بر پارامتر های خروجی ماشینکاری دارند. استفاده از پودر اکسید آلومینیوم و دوران ابزار باعث افزایش گپ و ایجاد نیروی گریز از مرکز شده و ذرات را به سرعت از منطقه ماشینکاری دور می کند و نرخ براده برداری افزایش می یابد. استفاده از پودر آلومینیوم در برخورد با جرقه ها باعث ریز تر شدن جرقه ها شده و عمق نفوذ آنها را کم نموده و در نتیجه زبری سطح کاهش می یابد. نتایج حاصل از بهینه سازی در حالت بدون پودر و دوران ابزار ترکیب پارامترها به‌صورت A3B1C2D3 ودر حالت با پودر و دوران ترکیب پارامترها به‌صورت A1B1C2D3 را پیشنهاد می کند.

کلیدواژه‌ها

موضوعات


[1]    S. Kalpakjian, “Manufacturing engineering and technology”, Addison-Wesley, 1995.

 

[2]    E. Uhlmann & D. C. Domingosb, “Development and optimization of the die-sinking EDM technology for machining the nickel-based alloy MAR-M247 for turbine componentsˮ, Procedia CIRP, Vol. 6, pp. 180-185, 2013.

 

[3]    Ayestaa & B. Izquierdob. “Influence of EDM parameters on slot machining in C1023 aeronautical alloyˮ, Procedia CIRP, Vol. 6, pp. 129-134, 2013.

 

[4]    A. Erden & S. Bilgin, “Role of impurities in electric discharge machining”, Proceedings of the 21st Conference on Machine Tool Design and Research Macmillan London, pp. 345-350, 1980.

 

[5]    K. Kung, J. Horng & K. Chiang, “Material removal rate and electrode wear ratio study on the powder mixed electrical discharge machining of cobalt-bonded tungsten carbide”, Journal of Manufacturing Technology, Vol. 40, pp. 95-104, 2009.

 

[6]    W. S. Zhao, Q. G. Meng & Z. L. Wang, “The application of research on powder mixed EDM in rough machiningˮ, Journal of Material Processing Technology, Vol. 129, pp. 30–33, 2002.

 

[7]    B. Mohan, A. Rajadurai & K. G. Satyanarayana, “Electric discharge machining of al–sic metal matrix composites using rotary tube electrode”, Journal of Materials Processing Technology, Vol. 153-154, pp. 978- 985, 2004.

 

[8]    C. C. Wang & B. H. Yan, “Blind hole drilling of Al2o3/6061al composite using rotary electro-discharge machining”, Journal of Materials Processing Technology, Vol. 102, pp. 90-102, 2000.

 

[9]    Y. H. Guu & H. Hocheng, “Effects of Workpiece Rotation on Machinability during Electrical Discharge Machining”, Journal of Materials and Manufacturing Process, Vol. 16, No. 1, pp. 91-101, 2001.

 

[10] B. Mohan, A. Rajadurai & K. G. Satyanarayana, “Effect of sic and rotation of electrode on electric discharge machining of al-sic composites”, Journal of Materials Manufacturing Process, Vol. 124, pp. 297-304, 2002.

 

[11] B. Mohan, A Rajadurai & K. G. Satyanarayana, “Electric discharge machining of Al–sic metal matrix composites using rotary tube electrode”, Journal of Materials Processing Technology, Vol. 153-154, pp. 978- 985, 2004.

 

[12] K. M. Patel P. M. Pandey & P. V. Rao, “Understanding the role of weight percentage and size of silicon carbide particulate reinforcement on electro discharge machining of aluminum based composites”, Journal of Materials and Manufacturing Processes, Vol. 23, No. 7, pp. 665-673, 2008.

 

[13] V. Senthilkumar & B. U. Omprakash, “Effect of Titanium Carbide particle addition in the aluminium composite on EDM process parameters”, Journal of Manufacturing Processes, Vol. 13, pp. 60-66, 2011.

 

[14] F. E. Kennedy, A. C. Balbahadur & D. S. Lashmore, “The friction and wear of cu based silicon carbide particulate metal-matrix composites for brake applications”, Wear, Vol. 203-204, pp. 715-721, 1997.

 

[15]    ح. زهره وند، "تأثیر عملیات حرارتی پیرسازی بر روی فوم‌های کامپوزیت‌های پایه آلومینیوم"، پایان‌نامه ﮐﺎرﺷﻨﺎﺳﯽ ارﺷﺪ، ﮔﺮوه مواد داﻧﺸﮕﺎه صنعتی امیرکبیر، 1391.

 

[16] S. Daneshmand, B. Masoudi & V. Monfared, “Electrical discharge machining of al/7.5% Al2O3 mmcs using rotary tool and al2o3 powderˮ, Surface Review And Letters, Vol. 24, pp. 1-17, 2017.

 

[17] G. Taguchi, Taguchi quality engineering hand book, New Jersey, 2005.

 

[18] C. M. Douglas, “Design and analysis of experiments”, Wiley, 2012.

 

[19] S. Daneshmand & B. Masoudi, “Investigation and optimization of the electro-discharge machining parameters of 2024 aluminum alloy and Al/7.5% Al2O3 particulate-reinforced metal matrix compositeˮ, Science and Engineering of Composite Materials, pp. 1-14, 2016.

 

[20]    م. قاسمی و م. فربودی، "کاربرد روش تاگوچی برای بهینه سازی خواظ مکانیکی نانو کامپوزیت پلی وینیل کلرایذ مونت موریلونیت"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال نهم، شماره سوم، صفحه 189-190، پاییز 1394.

[21]    ش. حسینی، م. باقر لیمویی و م. حسین زاده، "بهینه سازی عملیات حرارتی فولادهای منگنزی)هادفیلد ( با استفاده از روش تاگوچی"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال نهم، شماره سوم، صفحه 155-160، پاییز 1394.