بررسی تأثیر فعال سازی مکانیکی و سرعت گرمایش بر تشکیل کامپوزیت نانوساختار NiAl-Al2O3 به روش سنتز احتراقی

نوع مقاله: علمی-پژوهشی

نویسنده

عضو هیات علمی

چکیده

در این مقاله، تأثیر فعال‌سازی مکانیکی و سرعت افزایش دما (20 و °C/min40) بر رخداد واکنش‌ها در فرآیند سنتز کامپوزیت نانوساختار NiAl/Al2O3 از مخلوط پودری Ni، NiO و Al در گرمایش از 20 تا °C1300 مورد بررسی قرارگرفت. برای بررسی واکنش‌های رخ دهنده در نمونه‌ها، آنالیز دیفرانسیلی حرارتی، پراش سنجی اشعه ایکس و میکروسکوپی الکترونی روبشی انجام شد. در گرمایش نمونه‌های پودری بدون فعال‌سازی، واکنش گرمازای احیای NiO با Al و تشکیل فازهای Ni-Al در حضور آلومینیم مذاب رخ داد، درحالی‌که در اثر فعال‌سازی مکانیکی این واکنش‌ها در حالت جامد و در دمای پایین‌تر و به صورت مجزا از هم اتفاق افتاد. با کاهش سرعت گرمایش، واکنش‌ها در دمای پایین‌تر و به صورت تفکیک شده انجام شد. مکانیزم پیشنهادی برای رخداد واکنش‌ها در حین گرمایش پودر فعال‌سازی مکانیکی شده مطرح شد.
واژه‌های کلیدی:
کامپوزیت، مواد نانوساختار، سنتز احتراقی، NiAl، Al2O3، فعال‌سازی مکانیکی، آسیاکاری مکانیکی، نرخ گرمایش

کلیدواژه‌ها

موضوعات


[1]    P. Zhu, J. C. M. Li & C. T. Liu, “Reaction mechanism of combustion synthesis of NiAl”, Materials Science and Engineering, Vol. 329-331A, pp. 57–68, 2002.

 

[2]    M. M. Moshksar & M. Mirzaee, “Formation of NiAl intermetallic by gradual and explosive exothermic reaction mechanism during ball milling”, Intermetallics, Vol. 12, pp. 1361–1366, 2004.

 

[3]    E. Liu, J. Jia, Y. Bai, W. Wang & Y. Gao, “Study on preparation and mechanical property of nanocrystalline NiAl intermetallic”, Materials and Design, Vol. 53, pp. 596-601, 2014.

 

[4]    H. Zhao, F. Qiu, S. Jin & Q. Jiang, “High room-temperature plastic and work-hardening effect of the NiAl-matrix composites reinforced by particulates”, Intermetallics, Vol. 19, pp. 376-381, 2011.

 

[5]    R. Ismail & I. I. Yaacob, “Fabrication of nickel aluminide intermetallic-alumina nanocomposite via reaction synthesis”, Journal of Materials Processing Technology, Vol. 200, pp. 279–282, 2008.

 

[6]    X. Yuan, G. Liu, H. Jin & K. Che, “In situ synthesis of TiC reinforced metal matrix composite (MMC) coating by self propagating high temperature synthesis (SHS)”, Journal of Alloys and Compounds, Vol. 509, pp. L301-L303, 2011.

 

[7]    Q. W. Wang, G. H. Fan, L. Geng, J. Zhang, X. P. Cui, J. C. Pang, S. H. Qin & Y. Du, “A novel fabrication route to microlaminated TiB2-NiAl composite sheet with {111} <µνω > texture by roll bonding and annealing treatment”, Intermetallics, Vol. 37, pp. 46-51, 2013.

 

[8]    J. Guo, D. Jiang, Z. Xing & G. Li, “Tensile properties and microstructures of NiAl–20TiB2 and NiAl–20TiC in situ composites”, Materials and Design, Vol. 18, pp. 357–360, 1997.

 

[9]    H. Erdem Camurlua & F. Maglia, “Self-propagating high-temperature synthesis of ZrB2 or TiB2 reinforced Ni–Al composite powder”, Journal of Alloys and Compounds, Vol. 478, pp. 721-725, 2009.

 

[10] H. L. Zhao, F. Qiu, S. B. Jin & Q. C. Jiang, “Compression properties and work-hardening effect of the NiAl-matrix composite with TaB2 and TaB”, Intermetallics, Vol. 27, pp. 1-5, 2012.

 

[11] D. Tingaud, L. Stuppfler, S. Paris, D. Vrel, F. Bernard, C. Penot & F. Nardou, “Time-Resolved X-ray Diffraction Study of SHS-produced NiAl and NiAl–ZrO2 Composites”, International Journal of Self-Propagating High-Temperature Synthesis, Vol. 16, pp. 12-17, 2007.

 

[12] H. X. Zhu & R. Abbaschian, “In-situ processing of NiAl–alumina composites by thermite reaction”, Materials Science and Engineering, Vol. 282A, pp. 1-7, 2000.

 

[13] M. Khodaei, M. H. Enayati & F. Karimzadeh, “Mechanochemical behavior of Fe2O3–Al–Fe powder mixtures to produce Fe3Al–Al2O3 nanocomposite powder”, Journal of Materials Science, Vol. 43, pp. 132-138, 2008.

 

[14] S. C. Tjong & Z. Y. Ma., “Microstructural and mechanical characteristics of in situ metal matrix composites”, Materials Science and Engineering, Vol. 29, pp. 49–113, 2000.

 

[15] K. Morsi, “The diversity of combustion synthesis processing: a review”, Journal of Materials Science, Vol. 47, pp. 68–92, 2012.

 

[16] P. Mossino, “Some aspects in self-propagating high-temperature synthesis”, Ceramics International, Vol. 30, pp. 311-332, 2004.

 

[17] S. Z. Anvari, F. Karimzadeh & M. H. Enayati, “Synthesis and characterization of NiAl–Al2O3 nanocomposite powder by mechanical alloying”, Journal of Alloys and Compounds, Vol. 477, pp. 178-181, 2009.

 

[18] D. Oleszak, “NiAl-Al2O3 intermetallic matrix composite prepared by reactive milling and consolidation of powders”, Journal of Materials Science, Vol. 39, pp. 5169 – 5174, 2004.

 

[19] C. Lin, S. Hong & P. Lee, “Formation of NiAl-Al2O3 intermetallic-matrix composite powders by mechanical alloying technique”, Intermetallics, Vol. 8, pp. 1043-1048, 2000.

 

[20] V. Udhayabanu, K. R. Ravi, V. Vinod & B. S. Murty, “Synthesis of in-situ NiAl-Al2O3 nanocomposite by reactive milling and subsequent heat treatment”, Intermetallics, Vol. 18, pp. 353-358, 2010.

 

[21] V. Udhayabanu, N. Singh & B. S. Murty, “Mechanical activation of aluminothermic reduction of NiO by high energy ball milling”, Journal of Alloys and Compounds, Vol. 497, pp. 142-146, 2010.

 

[22] D. Padmavardhani, A. Gomez & R. Abbaschian, “Synthesis and microstructural characterization of NiAl-Al203 functionally gradient composites”, Intermetallics, Vol. 6, pp. 229-241, 1998.