[1] M. Javidi, S. Javadpour, M. E. Bahrololoom & J. Ma, “Electrophoretic deposition of natural hydroxyapatite on medical grade 316L stainless steel”, Materials Science and Engineering, Vol. 28C, pp. 1509-1515, 2008.
[2] C. Kaya, “Electrophoretic deposition of carbon nanotube-reinforced hydroxyapatite bioactive layers on Ti–6Al–4V alloys for biomedical applications”, Ceramics International, Vol. 34, pp. 1843-1847, 2008.
[3] M. Montazeri, C. Dehghanian, M. Shokouhfar & A. Baradaran, “Investigation of the voltage and time effects on the formation of hydroxyapatite-containing titania prepared by plasma electrolytic oxidation on Ti–6Al–4V alloy and its corrosion behavior” Applied Surface Science, Vol. 257, pp. 7268-7275, 2011.
[4] T. Moskalewicz, A. Czyrska-Filemonowicz & A. R. Boccaccini, “Microstructure of nanocrystalline TiO2 films produced by electrophoretic deposition on Ti–6Al–7Nb alloy”, Surface and Coatings Technology, Vol. 201, pp. 7467-7471 2007.
[5] P. C. Rath, L. Besra, B. P. Singh & S. Bhattacharjee, “Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: Characterization and corrosion studies”, Ceramics International, Vol. 38, pp. 3209-3216, 2012.
[6] O. Albayrak, O. El-Atwani & S. Altintas, “Hydroxyapatite coating on titanium substrate by electrophoretic deposition method: Effects of titanium dioxide inner layer on adhesion strength and hydroxyapatite decomposition”, Surface and Coatings Technology, Vol. 202, pp. 2482-2487, 2008.
[7] P. C. Rath, L. Besra, B. P. Singh & S. Bhattacharjee, “Titania/hydroxyapatite bi-layer coating on Ti metal by electrophoretic deposition: Characterization and corrosion studies”, Ceramics International, Vol. 38, pp. 3209-3216, 2012.
[8] ح. فرنوش، "رفتار الکتروشیمیایی و چسبندگی پوشش های الکتروفورتیک نانوساختار HA-TiO2"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 1، 89-71، بهار، 1395.
[9] L. Mohan, D. Durgalakshmi, M. Geetha, T. S. N. Sankara Narayanan & R. Asokaman, “Electrophoretic deposition of nanocomposite (HAp + TiO2) on titanium alloy for biomedical applications”, Ceramics International, Vol. 38, pp. 3435-3443, 2012.
[10] D. K. Jha, T. Kant, & R. K. Singh, “A critical review of recent research on functionally graded plates”, Composite Structures, Vol. 96, pp. 833-849, 2013.
[11] Araghi & M. J. Hadianfard, “Fabrication and characterization of functionally graded hydroxyapatite/TiO2 multilayer coating on Ti-6Al-4V titanium alloy for biomedical applications”, Ceramics International, Vol. 41, pp. 12668–12679, 2015.
[12] ع. عراقی، م. هادیان فرد، ط. طلایی و م. ثانی، "بررسی خواص پوشش با ساختار تغییرات تدریجی اکسید تیتانیوم/هیدروکسی اپتایت، اعمال شده به روش الکتروفورتیک بر روی آلیاژ تیتانیوم Ti6Al4V"، فصلنامه علمی پژوهشی فرآیندهای نوین در مهندسی مواد، شماره 2، 165-153، تابستان، 1395.
[13] ASTM Standard F3006-13, “Specification for ball drop impact resistance”, ASTM International, West Conshohocken, 2013.
[14] C. K. Lee, “Fabrication, characterization and wear corrosion testing of bioactive hydroxyapatite/nano-TiO2 composite coatings on anodic Ti–6Al–4V substrate for biomedical applications”, Materials Science and Engineering, Vol. 177B, pp. 810– 818. 2012.