[1] D. Y. Kim, Y. C. Chung & et al., “Dependence of microwave absorbing property on ferrite volume fraction in MnZn ferrite-rubber compositesˮ, IEEE Trans. Magn., Vol. 32, pp. 555-558, 1996.
[2] Y. Naito & K. Suetake, “Application of Ferrite to Electromagnetic Wave Absorber and its Characteristicsˮ, IEEE Trans. Microwave Theory Tech., Vol. 19, pp. 65-72, 1971.
[3] Saito, M. Ogawa, K. Tsutsui, H. Endo & S. Yahagi, Mater. Japan., Vol. 38, pp. 46–48, 1999.
[4] M. Matsumoto & Y. Miyata, Proceedings of EMC ’98 ROMA, pp. 523 –527, 1998.
[5] S. Yoshida, M. Sato, E. Sugawara & Y. Shimada, “Permeability and electromagnetic-interference characteristics of Fe–Si–Al alloy
flakes–polymer compositeˮ, J. Appl. Phys., Vol. 85, pp. 4636–4638, 1999.
[6] T. Maeda, S. Sugimoto, T. Kagotani, D. Book, K. Inomata, H. Ota & Y. Houjou, “Electromagnetic Microwave Absorption Properties of a Fine Structure Formed from the Sm2Fe17 Compound after Disproportionation in Air or Nitrogenˮ, Mater. Trans. JIM, Vol. 42, pp. 446–449, 2001.
[7] F. R. Lamastra, F. Nanni & et al., “Morphology and structure of electrospun Cofe2o4/multi-wall carbon nanotubes composite nanofibersˮ, Chem. Eng. J., Vol. 162, pp. 430-435, 2010.
[8] ص. منافی و م. جعفریان، "سنتز نانوذرات باریم تیتانات با درجه بلورینگی بالا به روش هیدروترمال"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 7، صفحه 13-20، 1393.
[9] م. جزیره پور و م. ح. شمس، "سنتز و مشخصهیابی نانومیلههای Fe2O3/BaFe12O19 و بررسی خواص مغناطیسی آنها"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، دوره 11، صفحه 139-148، 1396.
[10] J. Wan, X. Wang & et al., “Magnetoelectric CoFe2O4-Pb(Zr, Ti)O3 composite thin films derived by a sol-gel processˮ, J. Appl. Phys. Lett., Vol. 86, pp. 122501-122503, 2005.
[11] J. Cao, W. Fu & et al., “Large-scale synthesis and microwave absorption enhancement of actinomorphic tubular ZnO/CoFe2O4 nanocompositesˮ, J. Phys. Chem. B, Vol. 113, pp. 4642-4647, 2009.
[12] R. J. Pandya, U. S. Joshi & O. F. Caltun, “Microstructural and Electrical Properties of Barium Strontium Titanate and Nickel Zinc Ferrite Compositesˮ, Procedia Materials Science, Vol. 10, pp. 168 – 175, 2015.
[13] P. Pahuja, R. K. Kotnala & R. P. Tandon, “Effect of rare earth substitution on properties of barium strontium titanate ceramic and its multiferroic composite with nickel cobalt ferriteˮ, Journal of Alloys and Compounds, Vol. 617, pp. 140-148, 2014.
[14] K. Verma & S. Sharma, “Impedance spectroscopy and dielectric behavior in barium strontium titanate–nickel zinc ferrite compositesˮ, physica status solidi B, Vol. 249, pp. 209-216, 2012.
[15] C. M. Kanamadi, B. K. Das, C. W. Kim & et al., “Dielectric and magnetic properties of (x) CoFe2O4 + (1−x) Ba0.8Sr0.2TiO3 magnetoelectric compositesˮ, Materials Chemistry and Physics, Vol. 116, pp. 6-10, 2009.
[16] D. R. Patil & B. K. Chougule, “Studies on magnetic and magnetoelectric properties of the NiFe2O4–Ba0.7Sr0.3TiO3 compositesˮ, Journal of Materials Science: Materials in Electronics, Vol. 20, pp. 398-402, 2009.
[17] M. Sivakumar, S. Kanagesan & et al., “Synthesis of CoFe2O4 powder via PVA assisted sol–gel processˮ, J. Mater. Sci.: Mater. Electron., Vol. 23, pp. 1045-1049, 2012.
[18] W. Li & L. Fa-Shen, “Structural and magnetic properties of Co1-xZnxFe2O4 nanoparticlesˮ, Chin. Phys. B, Vol. 17, pp. 1858-1862, 2008.
[19] Hunyek, C. Sirisathitkul & P. Harding, “Synthesis and Characterization of CoFe2O4 particle by PVA sol-gel methodˮ, Adv. Mater. Res., Vol. 93-94, pp. 659-663, 2010.
[20] N. C. Pramanik, N. Anisha & et. al., “Preparation of BaxSr1−xTiO3 (x = 0–1) nanoparticles by wet-chemical decomposition of Ti-complex and study their dielectric propertiesˮ, Journal of Alloys and Compounds, Vol. 476, pp. 524–528, 2009.
[21] Q. Lu, D. Chen & et. al., “Preparation and characterization of Ba1-xSrxTiO3 (x=0.1, 0.2) fibers by sol–gel process using catechol-complexed titanium isopropoxideˮ, Journal of Alloys and Compounds, Vol. 358, pp. 76–81, 2003.
[22] W. Li, Z. Xu & et. al., “Sol–gel synthesis and characterization of Ba(1−x) SrxTiO3 ceramicsˮ, Journal of Alloys and Compounds, Vol. 499, pp. 255-258, 2010.
[23] X. F. Zhang, Q. Xu & et. al., “Low-temperature synthesis of superfine barium strontium titanate powder by the citrate methodˮ, Ceramics International, Vol. 36, pp. 1405–1409, 2010.
[24] C. Mao, X. Dong & et. al., “Nonhydrolytic sol–gel synthesis and dielectric properties of ultrafine-grained and homogenized Ba0.70Sr0.30TiO3ˮ, Ceramics International, Vol. 34, pp. 45–49, 2008.
[25] L. Q. Wang, H. M. Kang, D. F. Xue & C. H. Liu, “Synthesis and characterization of Ba0.5Sr0.5TiO3 nanoparticlesˮ, Journal of Crystal Growth, Vol. 311, pp. 605–607, 2009.
[26] S. S. Kim, S. B. Jo, K. I. Gueon, K. K. Choi, J. M. Kim & K. S. Chun, “Complex Permeability and Permittivity and Microwave Absorption of Ferrite-Rubber Composite in X-band Frequenciesˮ, IEEE Trans. Magn., Vol. 27, pp. 5462–5464, 1991.
[27] L. Li, Q. Li, C. Xiang, X. Liang & B. Hao, “Zn0.6Cu0.4Cr0.5Fe1.46Sm0.04O4 ferrite and its nanocomposites with polyaniline and polypyrrole: Preparation and electromagnetic propertiesˮ, Synthetic. Metals, Vol. 160, pp. 28-34, 2010.
[28] D. M. Pozar, “Microwave Engineeringˮ, John Wiley & Sons, New York, 2005.
[29] L. Singh, I. W. Kim, B. C. Sin, U. S. Rai, S. H. Hyun & Y. Lee, “Combustion synthesis of nanostructured Ba0.8(Ca, Sr)0.2TiO3 ceramics and their dielectric propertiesˮ, Ceram. Int., Vol. 41, pp. 12218-12228, 2015.
[30] T. Hu, J. Juuti, H. Jantunen & T. Vilkman, “Dielectric properties of BST/polymer compositeˮ, J. Eur. Ceram. Soc., Vol. 27, pp. 3997-4001, 2007.
[31] E. A. Nenasheva, N. F. Kartenko, I. M. Gaidamaka, O. N. Trubitsyna, S. S. Redozubov & A. I. Dedyk, et al., “Low loss microwave ferroelectric ceramics for high power tunable devicesˮ, J. Eur. Ceram. Soc., Vol. 30, pp. 395-400, 2010.
[32] J. Chameswary & M. T. Sebastian, “Butyl rubber–Ba0.7Sr0.3TiO3 composites for flexible microwave electronic applicationsˮ, Ceram. Int., Vol. 39, pp. 2795-2802, 2013.