[1] P. R Kurzweil, A. D. Frogameni & D. W. Jackson, “Tibial interference screw removal following anterior cruciate ligament reconstruction”, Arthrosc. J. Arthrosc. Relat. Surg, Vol. 11, No. 3, pp. 289–91, 1995.
[2] F. J. Buchanan, “Degradation Rate of Bioresorbable Materialsˮ, prediction and evaluation, CRC Press, Washington, DC, 2008.
[3] L. Cao, W. Weng, X. Chen, Y. Ding, Y. Yan, H. Li & et al., “Development of degradable and bioactive composite as bone implants by incorporation of mesoporous bioglass into poly(l-lactide)”, Compos. Part B Eng, Vol. 77, pp. 454–61, 2015.
[4] E. Castro Aguirre, F. Iñiguez-Franco, H. Samsudin, X. Fang & R. Auras, “Poly (lactic acid)—Mass production, processing, industrial applications, and end of life”, Adv. Drug Deliv. Rev, 2016.
[5] F. Ravari, A. Mashak, M. Nekoomanesh & H. Mobedi, “Non-isothermal cold crystallization behavior and kinetics of poly(l-lactide): Effect of l-lactide dimer” , Polym. Bull, Vol. 70, No. 9, pp. 2569–86, 2013.
[6] فرنوش. ح، "رفتار الکتروشیمیایی و چسبندگی پوشش های الکتروفورتیک نانوساختار "HA-TiO2، فرآیندهای نوین در مهندسی مواد، شماره 1، صفحات 71-89، 1395.
[7] ا. یزدانی چم زینی، م. رفیعی نیا، ب. موحدی، و ح. صالحی، "سنتز و رزیابی سمیت سلولی نانوالیاف شیشه ی زیستی تهیه شده به روش الکتروریسی جهت ساخت داربست مهندسی بافت"، فرآیندهای نوین در مهندسی مواد، شماره سه، صفحات 145-154، 1394.
[8] K. Chrissafis & D. Bikiaris, “Can nanoparticles really enhance thermal stability of polymers? Part I: An overview on thermal decomposition of addition polymers”, Thermochim. Acta, Vol. 523, No. 1–2, pp. 1–24, 2011.
[9] A. Larrañaga & J. R. Sarasua, “Effect of bioactive glass particles on the thermal degradation behaviour of medical polyesters”, Polym. Degrad. Stab, Vol. 98, No. 3, pp. 751–8, 2013.
[10] Y. Ramot, M. H. Zada, A. J. Domb & A. Nyska, “Biocompatibility and safety of PLA and its copolymers”, Adv. Drug Deliv. Rev, 2016.
[11] A. R. Boccaccini, M. Erol, W. J. Stark, D. Mohn, Z. Hong & J. F. Mano, “Polymer/bioactive glass nanocomposites for biomedical applications: A review”, Compos. Sci. Technol, Vol. 70, No. 13, pp. 1764–76, 2010.
[12] I. Armentano, M. Dottori, E. Fortunati, S. Mattioli & J. M. Kenny, “Biodegradable polymer matrix nanocomposites for tissue engineering: A review” , Polym. Degrad. Stab, Vol. 95, No. 11, pp. 2126–46, 2010.
[13] H. Deplaine, J. L. K. Ribelles G. G. Ferrer, “Effect of the content of hydroxyapatite nanoparticles on the properties and bioactivity of poly(l-lactide) - Hybrid membranes”, Compos. Sci. Technol, Vol. 70, No. 13, pp. 1805–12, 2010.
[14] K. Kesenci, L. Fambri, C. Migliaresi & E. Piskin, “Preparation and properties of poly(L-lactide)/hydroxyapatite composites”, J. Biomater. Sci. Polym. Ed, Vol. 11, No. 6, pp. 617–32, 2000.
[15] J. J. Blaker, A. Bismarck, A. R. Boccaccini, A. M. Young & S. N. Nazhat, “Premature degradation of poly(α-hydroxyesters) during thermal processing of Bioglass®-containing composites”, Acta Biomater, Vol. 6, No. 3, pp. 756–62, 2010.
[16] N. Ignjatovic, E. Suljovrujic, J. Budinski-Simendic, I. Krakovsky & D. Uskokovic, “Evaluation of hot-pressed hydroxyapatite/poly-L-lactide composite biomaterial characteristics”, J. Biomed. Mater. Res. - Part B Appl. Biomater, Vol. 71, No. 2, pp. 284–94, 2004.
[17] F. D. Kopinke, M. Remmler, K. Mackenzie, M. Möder O. Wachsen, “Thermal decomposition of biodegradable polyesters—II. Poly(lactic acid)”, Polym. Degrad. Stab, Vol. 53, No. 3, pp. 329–42, 1996.
[18] L. S. Kaplow, “A histochemical procedure for localizing and evaluating leukocyte alkaline phosphatase activity in smears of blood and marrow”, Blood, Vol. 10, No. 10, pp. 1023–9, 1955.
[19] M. Ngiam, S. Liao, A. J. Patil, Z. Cheng, C. K. Chan & S. Ramakrishna, “The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering”, Bone, Vol. 45, No. 1, pp. 4–16, 2009.
[20] J. E. Coleman, “Structure and Mechanism of Alkaline Phosphatase”, Annu. Rev. Biophys. Biomol. Struct, Vol. 21, No. 1, pp. 441–83, 1992.