تأثیر سرعت چرخش ابزار بر خواص مکانیکی و رفتار خوردگی اتصال غیرهمجنس آلیاژ آلومینیوم 5083 و تیتانیوم خالص تجاری به روش جوشکاری همزن اصطکاکی

نوع مقاله: علمی-پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، اصفهان، ایران.

2 استادیار، دانشگاه شهرکرد، ایران

3 استاد،مرکز تحقیقات مواد پیشرفته، دانشکده مهندسی مواد، واحد نجف آباد، دانشگاه آزاد اسلامی، نجف آباد، اصفهان، ایران

چکیده

در این مقاله، تأثیر سرعت چرخش ابزار بر روی خواص مکانیکی و خوردگی اتصال تیتانیوم خالص تجاری و آلیاژ آلومینیوم 5083، به روش همزن اصطکاکی، بررسی شده است. ابتدا با جوشکاری‌های مقدماتی محدوده پارامترهای لازم برای دستیابی به اتصال مناسب بدست آمده و سپس با تغییر سرعت چرخش ابزار، خواص مکانیکی و خوردگی نواحی متأثر از حرارت، ناحیة جوش و سطح مقطع جوش به کمک آزمون پلاریزاسیون تافل و روش طیف‌نگاری امپدانس الکتروشیمیایی، بررسی شده و نتایج حاصل مورد مقایسه قرار گرفته است. نتایج نشان می‌دهد که رفتار خوردگی در اتصالات، از سرعت چرخش ابزار تأثیر پذیر بوده و نواحی جوش و متأثر از حرارت، مقاومت در برابر خوردگی ضعیف‌تری نسبت به فلزات پایه داشته‌اند.

کلیدواژه‌ها

موضوعات


 [1]     P.J. Blau, “Friction science and technology: from concepts to applicationsˮ, CRC press, 2008.

 

[2]     Z. Feng, M. L. Santella, S. A. david, R. J. Steel & S. M. Packer, “Friction stir spot welding of advanced high-strength steels-A feasibility studyˮ, SAE Technical Paper, 2005.

 

[3]     W. M. Thomas, E. D Nicholas, E. R. Watts & M. G. Murch, “Method of operating on a workpieceˮ, Google Patents, 1995.

 

[4]     R. S. Mishra & Z. Ma, “Friction stir welding and processingˮ, Materials Science and Engineering, Vol. 50, pp. 1-78, 2005.

 

[5]     W. M. Thomas, E. D Nicholas, E. R. Watts & M. G. Murch, “Friction based welding technology for aluminiumˮ, in Materials Science Forum. Vol. 396, pp. 1543-1548, 2002.

 

[6]     M. Ericsson & R. Sandström, “Influence of welding speed on the fatigue of friction stir welds, and comparison with MIG and TIˮ, International Journal of Fatigue, Vol. 25, pp. 1379-1387, 2003.

 

[7]     M. Ellis, & M. Strangwood, “Welding of rapidly solidified Alloy 8009 (Al–8 5Fe–1 7Si–1 3V): preliminary studyˮ, Materials science and technology, Vol. 12, pp. 970-977, 1996.

 

[8]     S. H. Park, J. S. Kim, M. S. Han & S. J. Kim, “Corrosion and optimum corrosion protection potential of friction stir welded 5083-O Al alloy for leisure shipˮ, Transactions of Nonferrous Metals Society of China, Vol. 19, pp. 898-903, 2009.

 

[9]     J. Lumsden, M. Mahoney, G. Pollock & C. Rhodes, “Intergranular corrosion following friction stir welding of aluminum alloy 7075-T651. Corrosionˮ, Corrosion, Vol. 55, pp. 1127-1135, 1999.

 

[10] G. Biallas, R. Braun, C. Donne & W. Kaysser, “Mechanical properties and corrosion behavior of friction stir welded 2024-T3ˮ, in 1st International Symposium on Friction Stir Welding, Thousand Oaks, CA, pp. 14-16, 1999.

 

[11] F. Hannour, A. Davenport & M. Strangwood, “The 2nd International Symposium on Friction Stir Weldingˮ, Gothenburg, Sweden, 2000.

 

[12] J. Lumsden, M. Mahoney, & G. Pollock, “Corrosion behavior of friction stir welded high strength aluminum alloysˮ, DTIC Document, 2002.

 

[13] G. Elatharasan & V. S. S. Kumar, “Corrosion Analysis of Friction Stir-welded AA 7075 Aluminium Alloyˮ, Strojniški vestnik-Journal of Mechanical Engineering, Vol. 60, pp. 29-34, 2014.

 

[14] K. T. Babu, P. K. Kumar & S. Muthukumaran, “Mechanical, Metallurgical Characteristics and Corrosion Properties of Friction Stir Welded AA6061-T6 Using Commercial Pure Aluminium as a Filler Plateˮ, Procedia Materials Science, Vol. 6, pp. 648-655, 2014.

 

[15] E. T. Akinlabi, A. Andrews & S. A. Akinlabi, “Effects of processing parameters on corrosion properties of dissimilar friction stir welds of aluminium and copperˮ, Transactions of Nonferrous Metals Society of China, Vol. 24, pp. 1323-1330, 2014.

 

[16] C. Paglia & R. Buchheit, “A look in the corrosion of aluminum alloy friction stir weldsˮ, Scripta Materialia, Vol. 58, pp. 383-387, 2008.

 

[17] C. Rhodes, M. Moheney, W. Bingel & R. Spurling, “Effects of friction stir welding on microstructure of 7075 aluminumˮ, Scripta materialia, Vol. 36, pp. 69-75, 1997.

 

[18] M. Jariyaboon, A. Davenport, R. Ambat, B. Connolly & D. Price, “The effect of welding parameters on the corrosion behaviour of friction stir welded AA2024–T351ˮ, Corrosion Science, Vol. 49, No. 2. pp. 877-909, 2007.

 

[19] F. Hannour, A. Davenport & M. Strangwood, “Corrosion of friction stir welds in high strength aluminium alloysˮ, in 2nd International Symposium on Friction Stir Welding, pp. 26-28, 2000.

 

[20] W. Hu & E. I. Meletis, “Corrosion and environment-assisted cracking behavior of friction stir welded Al 2195 and Al 2219 alloysˮ, Materials science forum, Vol. 331, pp. 1683-1688, 2000.

 

[21] G. Frankel & Z. Xia, “Localized corrosion and stress corrosion cracking resistance of friction stir welded aluminum alloy 5454ˮ, Corrosion, Vol. 55, pp. 139-150, 1999.

 

[22] A. Squillace, A. De Fenzo, G. Giorleo & F. Bellucci, “A comparison between FSW and TIG welding techniques: modifications of microstructure and pitting corrosion resistance in AA 2024-T3 butt jointsˮ, Journal of Materials Processing Technology, Vol. 152, pp. 97-105, 2004.

 

[23] A. S. f. Testing, & Material, “ASTM designation E 8-00 Standard Test Methods for Tension Testing of Metallic Materialsˮ, ASTM, 2000.

 

[24] H. J. Liu, & Z. Li, “Microstructural zones and tensile characteristics of friction stir welded joint of TC4 titanium alloyˮ, Transactions of Nonferrous Metals Society of China, Vol. 20, pp. 1873-1878, 2010.

 

[25] M. Grujicic, G. Arakere, B. Pandurangan, A. Hariharan, & B. Cheeseman, “Computational analysis and experimental validation of the friction-stir welding behaviour of Ti—6Al—4Vˮ, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 225, pp. 208-223, 2011.

 

[26] Y. Zhang, Y. Sato, H. Kokawa & S. Park, “Stir zone microstructure of commercial purity titanium friction stir welded using pcBN toolˮ, Materials Science and Engineering, Vol. 448, pp. 25-30, 2008.

 

[27] H. Liu, L. Zhou, & Q. Liu, “Microstructural characteristics and mechanical properties of friction stir welded joints of Ti–6Al–4V titanium alloyˮ, Materials & Design, Vol. 31, pp. 1650-1655, 2010.

[28] V. Soundararajan, S. Zekovic & R. Kovacevic, “Thermo-mechanical model with adaptive boundary conditions for friction stir welding of Al 6061ˮ, International Journal of Machine Tools and Manufacture, Vol. 45, pp. 1577-1587, 2005.

 

[29] Y. h CHEN, N. Quan & L. m. KE, “Interface characteristic of friction stir welding lap joints of Ti/Al dissimilar alloysˮ, Transactions of Nonferrous Metals Society of China, Vol. 22, pp. 299-304, 2012.

 

[30] E. P. O. PROCESOV, “Experimental Comparison Of Resistance Spot Welding And Friction-Stir Spot Welding Processes For The En Aw 5005 Aluminum Alloyˮ, Materiali in tehnologije, Vol.. 45, pp. 395-399, 2011.

 

[31] A. Fuji, K. Ikeuchi, Y. Sato & H. Kokawa, “Interlayer growth at interfaces of Ti/Al–1% Mn, Ti/Al–4· 6% Mg and Ti/pure Al friction weld joints by post-weld heat treatmentˮ, Science and Technology of Welding & Joining, Vol. 9, pp. 507-512, 2004.

 

[32] A. Fuji, K. Ameyama & T. North, “Influence of silicon in aluminium on the mechanical properties of titanium/aluminium friction jointsˮ, Journal of materials science, Vol. 30, pp. 5185-5191, 1995.

 

[33] A. Fuji, “In situ observation of interlayer growth during heat treatment of friction weld joint between pure titanium and pure aluminiumˮ, Science and Technology of Welding & Joining, Vol. 7, pp. 413-416, 2002.

 

[34] R. Nandan, T. DebRoy & H. Bhadeshia, “Recent advances in friction-stir welding–process, weldment structure and propertiesˮ, Progress in Materials Science, Vol. 53, pp. 980-1023, 2008.

 

[35] U. Dressler, G. Biallas & U. A. Mercado, “Friction stir welding of titanium alloy TiAl6V4 to aluminium alloy AA2024-T3ˮ, Materials Science and Engineering, Vol. 536, pp. 113-117, 2009.

 

[36] H. Fujii, Y. Sun, H. Kato & K. Nakata, “Investigation of welding parameter dependent microstructure and mechanical properties in friction stir welded pure Ti jointsˮ, Materials Science and Engineering, Vol. 527A, pp. 3386-3391, 2010.

 

[37] K. Kitamura, H. Fujii, Y. Iwata, Y. sun & Y. Morisata, “Flexible control of the microstructure and mechanical properties of friction stir welded Ti–6Al–4V jointsˮ, Materials & Design, Vol. 46, pp. 348-354, 2013.

 

[38] A. Farias, G. Batalha, E. Prados, R. Magnabosco & S. Delijaicov, “Tool wear evaluations in friction stir processing of commercial titanium Ti–6Al–4Vˮ, Wear, Vol. 302, pp. 1327-1333, 2013.

 

[39] H. Bisadi, M. Tour & A. Tavakoli, “The influence of process parameters on microstructure and mechanical properties of friction stir welded Al 5083 Alloy lap jointˮ, American journal of Materials science, Vol. 1, pp. 93-97, 2011.

 

[40] T. Venugopal, K. S. Rao, & K. P. Rao, “Studies on friction stir welded AA 7075 aluminum alloyˮ, Trans. indian inst. met, Vol. 57, pp. 659-663, 2004.

 

[41] Z. Li, W. Arbegast, P. Hartley & E. Mletis, “Microstructure characterization and stress corrosion evaluation of friction stir welded Al 2195 and Al 2219 alloysˮ, ASM International, Trends in Welding Research(USA), pp. 568-573, 1999.

 

[42] K. Surekha, B. Murty & K. P. Rao, “Microstructural characterization and corrosion behavior of multipass friction stir processed AA2219 aluminium alloyˮ, Surface and Coatings Technology, Vol. 202, pp. 4057-4068, 2008.

 

[43] R. G. Kelly, B. Murtey & K. Rao, “Electrochemical techniques in corrosion science and engineeringˮ, 2002: CRC Press.

 

[44] R. Bosch, J. Hubrecht, W. Bogaerts & B. Syrett, “Electrochemical frequency modulation: a new electrochemical technique for online corrosion monitoringˮ, Corrosion, Vol. 57, pp. 60-70, 2001.

 

[45] M. E. Orazem & B. Tribollet, “Electrochemical impedance spectroscopyˮ, Vol. 48. 2001.

 

[46] Y. Yang & L. Zhou, “Improving Corrosion Resistance of Friction Stir Welding Joint of 7075 Aluminum Alloy by Micro-arc Oxidationˮ, Journal of Materials Science & Technology, Vol. 30, pp. 1251-1254, 2014.

 

[47] C. Shen, J. Zhang & J. Ge, “Microstructures and electrochemical behaviors of the friction stir welding dissimilar weldˮ, Journal of Environmental Sciences, Vol. 23, pp. 532-535, 2011.

 

[48] M. B. Hariri, S. Shiri, Y. Yaghoubinezhad & M. M. Rahvard, “The optimum combination of tool rotation rate and traveling speed for obtaining the preferable corrosion behavior and mechanical properties of friction stir welded AA5052 aluminum alloyˮ, Materials & Design, Vol. 50, pp. 620-634, 2013.