[1] D. Pech, M. Brunet, H. Durou, P. Huang, V. Mochalin, Y. Gogotsi, P. L. Taberna & P. Simon, “Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbonˮ, Nature nanotechnology, Vol. 5, No. 9, pp. 651-654, 2010.
[2] س. ح. دانشمند، م.ذاکری، ع. محمد بیگی و ع. نظری، "تاثیر گرافن بر خواص مکانیکی نانوکامپوزیت مس/گرافن"، فرایندهای نوین در مهندسی مواد، دوره 9، شماره 2، صفحه 141-148، تابستان 1394.
[3] ا. اسحاقی، ف. مجیری، ا. کرمی و ا. ابراهیم زاده، "اثر اعمال نانو فیلم کربن شبه الماسی بر بازدهی سلولهای خورشیدی سیلیکونی"، فرایندهای نوین در مهندسی مواد، دوره 9، شماره 2، صفحه 9-15، تابستان 1394.
[4] J. Chmiola, C. Largeot, P. L. Taberna, P. Simon & Y. Gogotsi, “Monolithic carbide-derived carbon films for micro-supercapacitorsˮ, Science, Vol. 328, No. 5977, pp. 480-483, 2010.
[5] P. Simon & Y. Gogotsi, “Materials for electrochemical capacitorsˮ, Nature materials, Vol. 7, No. 11, pp. 845-854, 2008.
[6] L. Q. Mai, F. Yang, Y. L. Zhao, X. Xu & L. Xu, “Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performanceˮ, Nature communications, Vol. 2, No. 381, pp. 1-5, 2011.
[7] Sieben, J. Manuel, E. Morallon & D. Cazorla Amorós, “Flexible ruthenium oxide-activated carbon cloth composites prepared by simple electrodeposition methodsˮ, Energy, Vol. 58, pp. 519-526, 2013.
[8] J. Zhang, J. Jiang, H. Lib & X. S. Zhao, “A high-performance asymmetric supercapacitor fabricated with graphene-based electrodesˮ, Energy & Environmental Science, Vol. 4, No. 10, pp. 4009-4015, 2011.
[9] Sun, Yiqing, Q. Wu & G. Shi, “Graphene based new energy materialsˮ, Energy & Environmental Science, Vol. 4, No. 4, pp. 1113-1132, 2011.
[10] S. Stankovich, D. A. Dikin, G. H. B. Dommett & K. M, “Graphene-based composite materialsˮ, nature, Vol. 442, No. 7100, pp. 282-286, 2006.
[11] Miller, R John, R. A. Outlaw & B. C. Holloway, “Graphene double-layer capacitor with ac line-filtering performanceˮ, Science, Vol. 329, No. 5999, pp. 1637-1639, 2010.
[12] M. D. Stoller, S. Park, Y. Zhu, J. An & R. S. Ruoff, “Graphene-based ultracapacitorsˮ, Nano letters, Vol. 8, No. 10, pp. 3498-3502, 2008.
[13] Z. Li, Z. Zhou, G. Yun, K. Shi, XiaoweiLv, B. Yang, “A one-pot method for producing ZnO–graphenenanocomposites from graphene oxide for supercapacitorsˮ, ScriptaMaterialia, Vol. 68, No. 5, pp. 301-304, 2013.
[14] D. R. Dreyer, S. Park, C. W. Bielawski & R. S. Ruoff, “The chemistry of graphene oxideˮ, Chemical Society Reviews, Vol. 39, No. 1, pp. 228-240, 2010.
[15] G. Katie, “Laser-scribed graphene presents an opportunity to print a new generation of disposable electrochemical sensorsˮ, Nanoscale, Vol. 6, No. 22, pp. 13613-13622, 2014.
[16] M. F. El Kady, V. Strong, S. Dubin & R. B. Kaner, “Laser scribing of high-performance and flexible graphene-based electrochemical capacitorsˮ, Science, Vol. 335, No. 6074, pp. 1326-1330, 2012.
[17] K. R. Ratinac, W. Yang, J. J. Gooding, P. Thordarson & F. Braet, “Graphene and related materials in electrochemical sensingˮ, Electroanalysis, Vol. 23, No. 4, pp. 803-826, 2011.
[18] El Kady, F. Maher & R. B. Kaner, “Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storageˮ, Nature communications, Vol. 4, No. 1475, pp. 1-9, 2013.
[19] El Kady, F. Maher & R. B. Kaner, “Direct laser writing of graphene electronicsˮ, ACS nano, Vol. 8, No. 9, pp. 8725-8729, 2014.
[20] H. Tian, Y. Yang, D. Xie, Y. L. Cui, W. T. Mi, Y. Zhang & T. L. Ren, “Wafer-scale integration of graphene-based electronic, optoelectronic and electroacoustic devicesˮ, Scientific reports, Vol. 4, pp. 3598- 3606, 2014.
[21] S. Abdolhosseinzadeh, H. Asgharzadeh & H. S. Kim, “Fast and fully-scalable synthesis of reduced graphene oxideˮ, Scientific reports, Vol. 5, pp. 10160-10167, 2015.