[1] م. فروغی، س. کرباسی، ر. ابراهیمی کهریزسنگی و ع. سعادت، "ارزیابی خواص فیزیکی داربست کامپوزیت نانو کریستال هیدروکسی آپاتیت/پلی هیدروکسی بوتیرات برای کاربرد در مهندسی بافت استخوان"، فرآیندهای نوین در مهندسی مواد، سال 6، صفحه 60-51، 1390.
[2] D. Puppi, F. Chiellini, A. M. Piras & E. Chiellini, “Polymeric materials for bone and cartilage repairˮ, Progress in Polymer Science, Vol. 35, pp. 403–440, 2010.
[3] ا. یزدانی چم زینی، م. رفیعی نیا، ب. موحدی و ح. صالحی، "سنتز و ارزیابی سمیت سلولی نانو الیاف شیشهی زیستی تهیه شده به روش الکتروریسی جهت ساخت داربست مهندسی بافت"، فرآیندهای نوین در مهندسی مواد، سال 9، صفحه 154-145، 1394.
[4] Y. Zhang, M. Chen, J. Yan, Z. Ye, Y. Zhou, W. Tan & M. Lang, “Surface properties of amino-functionalized poly(ε-caprolactone) membranes and the improvement of human mesenchymal stem cell behaviorˮ, Colloid and Interface Science, Vol. 368, pp. 64–69, 2012.
[5] Z. Xie, C. Lu, X. Chen, L. Chen, X. Hu, Q. Shi & X. Jing, “A facile approach to biodegradable poly(ε-caprolactone)-poly (ethylene glycol)-based polyurethanes containing pendant amino groupsˮ, European Polymer Journal, Vol. 43, pp. 2080–2087, 2007.
[6] G. G. Ayala, E. D. Pace, P. Laurienzo, D. Pantalena, E. Sommab & M. R. Nobile, “Poly(ε-caprolactone) modified by functional groups: Preparation and chemical–physical investigationˮ, European Polymer Journal, Vol. 45, pp. 3217–3229, 2009.
[7] Q. Guo, S. Slavov & P. J. Halley, “Phase Behavior, Crystallization, and morphology in thermosetting blends of a biodegradable poly (ethylene glycol)-type epoxy resin and poly (ε -caprolactone)ˮ, Polymer Science: Part B: Polymer Physics, Vol. 42, pp. 2833–2843, 2004.
[8] J. Zhu, “Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineeringˮ, Biomaterials, Vol. 31, pp. 4639-4656, 2010.
[9] C. P. Jiang, Y. Y. Chen & M. F. Hsieh, “Biofabrication and in vitro study of hydroxyapatite/mPEG–PCL–mPEG scaffolds forbone tissue engineering using air pressure-aided deposition technologyˮ, Materials Science and Engineering, Vol. 33C, pp. 680–690, 2013.
[10] B. Chuenjitkuntaworn, W. Inrung, D. Damrongsri, K. Mekaapiruk, P. Supaphol & P. Pavasant, “Polycaprolactone/Hydroxyapatite composite scaffolds: Preparation, characterization, and in vitro and in vivo biological responses of human primary bone cellsˮ, Biomedical Material Research, Vol. 94A, pp. 241–251, 2010.
[11] Y. Wang, L. Liu & S. Guo, “Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitroˮ, Polymer Degradation and Stability, Vol. 95, pp. 207-213, 2010.
[12] Y. Jiang, K. Mao, X. Cai, S. Lai & X. Chen, “Poly (ethyl glycol) Assisting water sorption enhancement of poly (ε-caprolactone) blend for drug deliveryˮ, Applications Polymer Science, VoL. 122, pp. 2309–2316, 2011.
[13] C. S. Cho, S. Y. Han, J. H. Ha, S. H. Kim & D. Y. Lim, “Clonazepam release from bioerodible hydrogels based on semi-interpenetrating polymer networks composed of poly ( -caprolactone) and poly (ethylene glycol) macromerˮ, International Journal of Pharmaceutics, Vol. 181, pp. 235–242, 1999.
[14] H. Y. Kweona, M. K. Yoob, I. K. Park, T. H. Kimb, H. C. Lee, H. S. Lee, J. S. Oh, T. Akaiked & C. S. Cho, “A novel degradable polycaprolactone networks for tissue engineeringˮ Biomaterials, Vol. 24, pp. 801–808, 2003.
[15] L. Cai & S. Wang, “Poly (ε-caprolactone) acrylates synthesized using a facile method for fabricating networks to achieve controllable physicochemical properties and tunable cell responsesˮ, Polymer, Vol. 51, pp. 164–177, 2010.
[16] L. Cai, A. S. Guinn & S. Wang, “Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiationˮ, Acta Biomaterialia, Vol. 7, pp. 2185–2199, 2011.
[17] M. G. Henry, L. Cai, X. Liu, L. Zhang, J. Dong, L. Chen, Z. Wang & S. Wang, “Roles of hydroxyapatite allocation and microgroove dimension in promoting preosteoblastic cell functions on photocured polymer nanocomposites through nuclear distribution and alignmentˮ, Langmuir, Vol. 31, pp. 2851−2860, 2015.
[18] M. Jaiswal, A. K. Dinda, A. Gupta & V. Koul, “Polycaprolactone diacrylate crosslinked biodegradable semi-interpenetrating networks of polyacrylamide and gelatin for controlled drug deliveryˮ, BiomedicalMaterials, Vol. 5, pp. 065014, 2010.
[19] N. Koupaei, A. Karkhaneh & M. Daliri Joupari, “Preparation and characterization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engineering scaffoldsˮ, Biomed Mater Res, Vol. 103A, pp. 919-3926, 2015.
[20] Z. L. Mou, L. J. Zhao, Q. A. Zhang, J. Zhang & Z. Q. Zhang, “Preparation of porous PLGA/HA/collagen scaffolds with supercritical CO2 and application in osteoblast cell cultureˮ, The Journal of Supercritical Fluids, Vol. 3, pp. 398-406, 2011.
[21] W. W. Thein Han & R. D. K. Misra, “Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineeringˮ, Acta Biomaterialia, Vol. 4, pp. 1182-1197, 2009.
[22] S. Wang, M. J. Yaszemski, J. A. Gruetzmacher & L. Lu, “Photo-crosslinked poly (ε-caprolactone fumarate) networks: roles of crystallinity and crosslinking density in determining mechanical propertiesˮ, Polymer, Vol. 49, pp. 5692-5699, 2008.
[23] C. P. Jiang, Y. Y. Chen & M. F. Hsieh, “Biofabrication and in vitro study of hydroxyapatite/mPEG–PCL–mPEG scaffolds forbone tissue engineering using air pressure-aided deposition technologyˮ, Materials Science and Engineering, Vol. 33C, pp. 680–690, 2013.
[24] M. Peter, N. S. Binulal, S. Soumya, S. V. Nair, T. Furuike, H. Tamura & R. Jayakumar, “Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applicationsˮ Carbohydrate Polymers, Vol. 79, pp. 284–289, 2010.
[25] Z. Li, H. R. Ramay, K. D. Hauch, D. Xiao & M. Zhang, “Chitosan–alginate hybrid scaffolds for bone tissue engineeringˮ, Biomaterials, Vol. 26, pp. 3919–3928, 2005.
[26] L. P. Yan, J. M. Oliveira, A. L. Oliveira, S. G. Caridade, J. F. Mano & R. L. Reis, “Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applicationsˮ Acta biomaterialia, Vol. 1, pp. 289-301, 2012.
[27] Y. Wang, M. A. Rodriguez Perez, R. L. Reis & J. F. Mano, “Thermal and thermomechanical behaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applicationsˮ, Macromolecular Materials and Engineering, Vol. 8, pp. 792-801, 2008.
[28] D. Z. Chen, C. Y. Tang, K. C. Chan, C. P. Tsui, P. H. F. Yu, M. C. P. Leung & P. S. Uskokovic, “Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocompositeˮ, Composites science and technology, Vol. 7, pp. 1617-1626, 2007.
[29] C. J. Pérez, V. A. Alvarez, I. Mondragon & A. Vazquez, “Mechanical properties of layered silicate/starch polycaprolactone blend nanocompositesˮ, Polymer International, Vol. 5, pp. 686-693, 2007.
[30] S. N. Nazhat, M. Kellomaki, P. Tormala, K. E. Tanner & W. Bonfield, “Dynamic mechanical characterization of biodegradable composites of hydroxyapatite and polylactidesˮ, Journal of biomedical materials research, Vol. 4, pp. 335-343, 2001.
[31] L. Pan, X. Pei, R. He, Q. Wan & J. Wang, “Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering applicationˮ, Colloids and Surfaces, Biointerfaces, Vol. 93B, pp. 226– 234, 2012.
[32] J. Venkatesan, R. Pallela, I. Bhatnagar & S. K. Kim, “Chitosan–amylopectin/hydroxyapatite and chitosan–chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineeringˮ International journal of biological macromolecules, Vol. 5, pp. 1033-1042, 2012.