بررسی خصوصیات مکانیکی و بیولوژیکی داربست مهندسی بافت بر پایه پلی کاپرولاکتون عامل دار و پلی اتیلن گلایکول دی آکریلات تقویت شده با ذرات هیدروکسی آپاتیت

نوع مقاله: علمی-پژوهشی

نویسندگان

1 استاد دانشگاه/دانشگاه آزاد اسلامی واحد نجف آباد

2 استاد دانشگاه/دانشگاه صنعتی امیر کبیر

چکیده

هدف از انجام این تحقیق ساخت داربست مهندسی بافت استخوان برپایه پلی کاپرولاکتون عامل دار و پلی اتیلن گلایکول دی آکریلات در حضور ذرات هیدروکسی آپاتیت و بررسی خصوصیات مکانیکی و بیولوژیکی داربست حاصل است. در مرحله اول، پلی‌کاپرولاکتون دی‌ال (PCL diol) از طریق واکنش با آکریلیک اسید کلراید، آکریلاته شد و آکریلاته شدن آن با استفاده از طیف‌نگاری مادون قرمز (FTIR) تأیید شد. سپس داربست‌ها از طریق برقراری اتصال عرضی رادیکالی بین پلی‌کاپرولاکتون دی آکریلات و پلی‌اتیلن‌گلایکول دی‌آکریلات درحضور ذرات هیدروکسی آپاتیت و خروج ذرات کلرید سدیم به عنوان تخلخل‌زا ساخته شد. نمونه‌های تهیه شده با استفاده از روش‌هایی مانند میکروسکوپ الکترونی روبشی (SEM)، طیف نگاری مادون قرمز (FTIR) و آنالیز حرارتی مکانیکی دینامیکی (DMTA) مورد ارزیابی قرار گرفت. نتایج نشان داد که با افزایش نسبت پلی‌اتیلن‌گلایکول دی‌آکریلات (PEGDA) به پلی‌کاپرولاکتون دی‌آکریلات (PCLDA) در شبکه پلیمری، پیک منحنی فاکتور اتلافی (Tan δ) افزایش و مدول فشاری کاهش یافت. به علاوه، با افزودن ذرات هیدروکسی آپاتیت به شبکه‌های پلیمری PCLDA/PEGDA پیک منحنی Tan δ کاهش و مدول فشاری افزایش یافت. به منظور بررسی سمیت یا عدم سمیت داربست‌ها از آزمون تماس مستقیم، بررسی سلول‌های چسبیده شده بر روی داربست و رنگ آمیزی سلولی استفاده شد. نتایج آزمون‌های بیولوژیکی سمیت سازگار بودن داربست‌های PCLDA/PEGDA/HA را نشان داد. همچنین سلول‌های فیبروبلاست و استئوبلاست به خوبی بر روی سطح داربست و دیواره تخلخل‌های آن چسبیده و گسترده شده‌اند. نتایج نشان داد داربست‌های PCLDA/PEGDA/HA پناسیل استفاده در مهندسی بافت استخوان را دارند.

کلیدواژه‌ها

موضوعات


 

[1]       م. فروغی، س. کرباسی، ر. ابراهیمی کهریزسنگی و ع. سعادت، "ارزیابی خواص فیزیکی داربست کامپوزیت نانو کریستال هیدروکسی آپاتیت/پلی هیدروکسی بوتیرات برای کاربرد در مهندسی بافت استخوان"، فرآیندهای نوین در مهندسی مواد، سال 6، صفحه 60-51، 1390.

 

[2]     D. Puppi, F. Chiellini, A. M. Piras & E. Chiellini, “Polymeric materials for bone and cartilage repairˮ, Progress in Polymer Science, Vol. 35, pp. 403–440, 2010.

 

[3]       ا. یزدانی چم زینی، م. رفیعی نیا، ب. موحدی و ح. صالحی، "سنتز و ارزیابی سمیت سلولی نانو الیاف شیشه­ی زیستی تهیه شده به روش الکتروریسی جهت ساخت داربست مهندسی بافت"، فرآیندهای نوین در مهندسی مواد، سال 9، صفحه 154-145، 1394.

 

[4]     Y. Zhang, M. Chen, J. Yan, Z. Ye, Y. Zhou, W. Tan & M. Lang, “Surface properties of amino-functionalized poly(ε-caprolactone) membranes and the improvement of human mesenchymal stem cell behaviorˮ, Colloid and Interface Science, Vol. 368, pp. 64–69, 2012.

 

[5]     Z. Xie, C. Lu, X. Chen, L. Chen, X. Hu, Q. Shi & X. Jing, “A facile approach to biodegradable poly(ε-caprolactone)-poly (ethylene glycol)-based polyurethanes containing pendant amino groupsˮ, European Polymer Journal, Vol. 43, pp. 2080–2087, 2007.

 

[6]     G. G. Ayala, E. D. Pace, P. Laurienzo, D. Pantalena, E. Sommab & M. R. Nobile, “Poly(ε-caprolactone) modified by functional groups: Preparation and chemical–physical investigationˮ, European Polymer Journal, Vol. 45, pp. 3217–3229, 2009.

 

[7]     Q. Guo, S. Slavov & P. J. Halley, “Phase Behavior, Crystallization, and morphology in thermosetting blends of a biodegradable poly (ethylene glycol)-type epoxy resin and poly (ε -caprolactone)ˮ, Polymer Science: Part B: Polymer Physics, Vol. 42, pp. 2833–2843, 2004.

 

[8]     J. Zhu, “Bioactive modification of poly (ethylene glycol) hydrogels for tissue engineeringˮ, Biomaterials, Vol. 31, pp. 4639-4656, 2010.

 

[9]     C. P. Jiang, Y. Y. Chen & M. F. Hsieh, “Biofabrication and in vitro study of hydroxyapatite/mPEG–PCL–mPEG scaffolds forbone tissue engineering using air pressure-aided deposition technologyˮ, Materials Science and Engineering, Vol. 33C, pp. 680–690, 2013.

 

[10] B. Chuenjitkuntaworn, W. Inrung, D. Damrongsri, K. Mekaapiruk, P. Supaphol & P. Pavasant, “Polycaprolactone/Hydroxyapatite composite scaffolds: Preparation, characterization, and in vitro and in vivo biological responses of human primary bone cellsˮ, Biomedical Material Research, Vol. 94A, pp. 241–251, 2010.

 

[11] Y. Wang, L. Liu & S. Guo, “Characterization of biodegradable and cytocompatible nano-hydroxyapatite/polycaprolactone porous scaffolds in degradation in vitroˮ, Polymer Degradation and Stability, Vol. 95, pp. 207-213, 2010.

 

[12] Y. Jiang, K. Mao, X. Cai, S. Lai & X. Chen, “Poly (ethyl glycol) Assisting water sorption enhancement of poly (ε-caprolactone) blend for drug deliveryˮ, Applications Polymer Science, VoL. 122, pp. 2309–2316, 2011.

 

[13] C. S. Cho, S. Y. Han, J. H. Ha, S. H. Kim & D. Y. Lim, “Clonazepam release from bioerodible hydrogels based on semi-interpenetrating polymer networks composed of poly ( -caprolactone) and poly (ethylene glycol) macromerˮ, International Journal of Pharmaceutics, Vol. 181, pp. 235–242, 1999.

 

[14] H. Y. Kweona, M. K. Yoob, I. K. Park, T. H. Kimb, H. C. Lee, H. S. Lee, J. S. Oh, T. Akaiked & C. S. Cho, “A novel degradable polycaprolactone networks for tissue engineeringˮ Biomaterials, Vol. 24, pp. 801–808, 2003.

 

[15] L. Cai & S. Wang, “Poly (ε-caprolactone) acrylates synthesized using a facile method for fabricating networks to achieve controllable physicochemical properties and tunable cell responsesˮ, Polymer, Vol. 51, pp. 164–177, 2010.

 

[16] L. Cai, A. S. Guinn & S. Wang, “Exposed hydroxyapatite particles on the surface of photo-crosslinked nanocomposites for promoting MC3T3 cell proliferation and differentiationˮ, Acta Biomaterialia, Vol. 7, pp. 2185–2199, 2011.

 

[17] M. G. Henry, L. Cai, X. Liu, L. Zhang, J. Dong, L. Chen, Z. Wang & S. Wang, “Roles of hydroxyapatite allocation and microgroove dimension in promoting preosteoblastic cell functions on photocured polymer nanocomposites through nuclear distribution and alignmentˮ, Langmuir, Vol. 31, pp. 2851−2860, 2015.

 

[18] M. Jaiswal, A. K. Dinda, A. Gupta & V. Koul, “Polycaprolactone diacrylate crosslinked biodegradable semi-interpenetrating networks of polyacrylamide and gelatin for controlled drug deliveryˮ, BiomedicalMaterials, Vol. 5, pp. 065014, 2010.

 

[19] N. Koupaei, A. Karkhaneh & M. Daliri Joupari, “Preparation and character­ization of (PCL-crosslinked-PEG)/hydroxyapatite as bone tissue engi­neering scaffoldsˮ, Biomed Mater Res, Vol. 103A, pp. 919-3926, 2015.

 

[20] Z. L. Mou, L. J. Zhao, Q. A. Zhang, J. Zhang & Z. Q. Zhang, “Preparation of porous PLGA/HA/collagen scaffolds with supercritical CO2 and application in osteoblast cell cultureˮ, The Journal of Supercritical Fluids, Vol. 3, pp. 398-406, 2011.

 

[21] W. W. Thein Han & R. D. K. Misra, “Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineeringˮ, Acta Biomaterialia, Vol. 4, pp. 1182-1197, 2009.

 

[22] S. Wang, M. J. Yaszemski, J. A. Gruetzmacher & L. Lu, “Photo-crosslinked poly (ε-caprolactone fumarate) networks: roles of crystallinity and crosslinking density in determining mechanical propertiesˮ, Polymer, Vol. 49, pp. 5692-5699, 2008.

 

[23] C. P. Jiang, Y. Y. Chen & M. F. Hsieh, “Biofabrication and in vitro study of hydroxyapatite/mPEG–PCL–mPEG scaffolds forbone tissue engineering using air pressure-aided deposition technologyˮ, Materials Science and Engineering, Vol. 33C, pp. 680–690, 2013.

 

[24] M. Peter, N. S. Binulal, S. Soumya, S. V. Nair, T. Furuike, H. Tamura & R. Jayakumar, “Nanocomposite scaffolds of bioactive glass ceramic nanoparticles disseminated chitosan matrix for tissue engineering applicationsˮ Carbohydrate Polymers, Vol. 79, pp. 284–289, 2010.

 

[25] Z. Li, H. R. Ramay, K. D. Hauch, D. Xiao & M. Zhang, “Chitosan–alginate hybrid scaffolds for bone tissue engineeringˮ, Biomaterials, Vol. 26, pp. 3919–3928, 2005.

 

[26] L. P. Yan, J. M. Oliveira, A. L. Oliveira, S. G. Caridade, J. F. Mano & R. L. Reis, “Macro/microporous silk fibroin scaffolds with potential for articular cartilage and meniscus tissue engineering applicationsˮ Acta biomaterialia, Vol. 1, pp. 289-301, 2012.

 

[27] Y. Wang, M. A. Rodriguez Perez, R. L. Reis & J. F. Mano, “Thermal and thermomechanical behaviour of polycaprolactone and starch/polycaprolactone blends for biomedical applicationsˮ, Macromolecular Materials and Engineering, Vol. 8, pp. 792-801, 2008.

 

[28] D. Z. Chen, C. Y. Tang, K. C. Chan, C. P. Tsui, P. H. F. Yu, M. C. P. Leung & P. S. Uskokovic, “Dynamic mechanical properties and in vitro bioactivity of PHBHV/HA nanocompositeˮ, Composites science and technology, Vol. 7, pp. 1617-1626, 2007.

 

[29] C. J. Pérez, V. A. Alvarez, I. Mondragon & A. Vazquez, “Mechanical properties of layered silicate/starch polycaprolactone blend nanocompositesˮ, Polymer International, Vol. 5, pp. 686-693, 2007.

 

[30] S. N. Nazhat, M. Kellomaki, P. Tormala, K. E. Tanner & W. Bonfield, “Dynamic mechanical characterization of biodegradable composites of hydroxyapatite and polylactidesˮ, Journal of biomedical materials research, Vol. 4, pp. 335-343, 2001.

 

[31] L. Pan, X. Pei, R. He, Q. Wan & J. Wang, “Multiwall carbon nanotubes/polycaprolactone composites for bone tissue engineering applicationˮ, Colloids and Surfaces, Biointerfaces, Vol. 93B, pp. 226– 234, 2012.

 

[32] J. Venkatesan, R. Pallela, I. Bhatnagar & S. K. Kim, “Chitosan–amylopectin/hydroxyapatite and chitosan–chondroitin sulphate/hydroxyapatite composite scaffolds for bone tissue engineeringˮ International journal of biological macromolecules, Vol. 5, pp. 1033-1042, 2012.