[1] ا. ح. اسلامی، س. م. زبرجد و م. م.مشکسار، "بررسی رفتار ساختاری، مکانیکی و الکتریکی کامپوزیت لایه ای مس تولید شده به روش اتصال نورد تجمعی"، فصلنامه علمی-پژوهشی فرایندهای نوین در مهندسی مواد ، دوره 9، شماره 1، ص 1-7، بهار 1394.
[2] L. S. Toth & C. Gu, “Ultrafine-grain metals by severe plastic deformationˮ, Materials Characterization, Vol. 92, pp. 1-14, 2014.
[3] Z. Horita, M. Furukawa, M. Nemoto, A. J. Barnes & T. G. Langdon, “Superplastic forming at high strain rates after severe plastic deformationˮ, Acta Materialia, Vol. 48, No. 14, pp. 3633-3640, 2000.
[4] R. Z. Valiev & T. G. Langdon, “Principles of equal-channel angular pressing as a processing tool for grain refinementˮ, Progress in Materials Science, Vol. 51, No. 7, pp. 881-981, 2006.
[5] س. متین و م. پاکشیر، "بررسی رفتار خوردگی حفرهای کامپوزیت Al-nano ZrO2 تولید شده به روش اتصال نورد تجمعی"، فصلنامه علمی-پژوهشی فرایندهای نوین در مهندسی مواد، دوره 10، شماره 2، ص 177-184، تابستان 1395.
[6] X. Sauvage, G. Wilde, S. Divinski, Z. Horita & R. Valiev, “Grain boundaries in ultrafine grained materials processed by severe plastic deformation and related phenomenaˮ, Materials Science and Engineering: A, Vol. 540, pp. 1-12, 2012.
[7] R. Z. Valiev, R. K. Islamgaliev & I. V. Alexandrov, “Bulk nanostructured materials from severe plastic deformationˮ, Progress in materials science, Vol. 45, No. 2, pp. 103-189, 2000.
[8] R. Z. Valiev, Y. Estrin, Z. Horita, T. G. Langdon, M. J. Zechetbauer & Y. T. Zhu, “Producing bulk ultrafine-grained materials by severe plastic deformationˮ, JOM Journal of the Minerals, Metals and Materials Society, Vol. 58, No. 4, pp. 33-39, 2006.
[9] Sabirov, M. Perez Prado, J. Molina Aldareguia, I. Semenova, G. K. Salimgareeva & R. Valiev, “Anisotropy of mechanical properties in high-strength ultra-fine-grained pure Ti processed via a complex severe plastic deformation routeˮ, Scripta Materialia, Vol. 64, No. 1, pp. 69-72, 2011.
[10] E. Ortiz Cuellar, M. Hernandez Rodriguez & E. García Sanchez, “Evaluation of the tribological properties of an Al–Mg–Si alloy processed by severe plastic deformationˮ, Wear, Vol. 271, No. 9, pp. 1828-1832, 2011.
[11] Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai & R. Hong, “Ultra-fine grained bulk aluminum produced by accumulative roll-bonding (ARB) processˮ, Scripta materialia, Vol. 39, No. 9, pp. 1221-1227, 1998.
[12] J. Del Valle, M. Pérez-Prado & O. Ruano, “Accumulative roll bonding of a Mg-based AZ61 alloyˮ, Materials Science and Engineering: A, Vol. 410, pp. 353-357, 2005.
[13] M. Alizadeh & M. Paydar, “High-strength nanostructured Al/B 4 C composite processed by cross-roll accumulative roll bondingˮ, Materials Science and Engineering: A, Vol. 538, pp. 14-19, 2012.
[14] R. Jamaati, M. R. Toroghinejad, S. Amirkhanlou & H. Edris, “Strengthening mechanisms in nanostructured interstitial free steel deformed to high strainˮ, Materials Science and Engineering: A, Vol. 639, pp. 656-662, 2015.
[15] S. A. Hosseini & H. D. Manesh, “High-strength, high-conductivity ultra-fine grains commercial pure copper produced by ARB processˮ, Materials & Design, Vol. 30, No. 8, pp. 2911-2918, 2009.
[16] H. Yu, L. Su, C. Lu, K. Tieu, H. Li, J. Li, A. Godbole & C. Kong, “Enhanced mechanical properties of ARB-processed aluminum alloy 6061 sheets by subsequent asymmetric cryorolling and ageingˮ, Materials Science and Engineering: A, Vol. 674, pp. 256-261, 2016.
[17] C. Y. Chou, C. W. Hsu, S. L. Lee, K. W. Wang & J. C. Lin, “Effects of heat treatments on AA6061 aluminum alloy deformed by cross-channel extrusionˮ, Journal of materials processing technology, Vol. 202, No. 1, pp. 1-6, 2008.
[18] M. R. Rezaei, M. R. Toroghinejad & F. Ashrafizadeh, “Production of nano-grained structure in 6061 aluminum alloy strip by accumulative roll bondingˮ, Materials Science and Engineering: A, Vol. 529, pp. 442-446, 2011.
[19] K. T. Park, H. J. Kwon, W. J. Kim & Y. S. Kim, “Microstructural characteristics and thermal stability of ultrafine grained 6061 Al alloy fabricated by accumulative roll bonding processˮ, Materials Science and Engineering: A, Vol. 316, No. 1, pp. 145-152, 2001.
[20] S. H. Lee, Y. Saito, T. Sakai & H. Utsunomiya, “Microstructures and mechanical properties of 6061 aluminum alloy processed by accumulative roll-bondingˮ, Materials Science and Engineering: A, Vol. 325, No. 1, pp. 228-235, 2002.
[21] S. O. Gashti, A. Fattah alhosseini, Y. Mazaheri & M. K. Keshavarz, “Microstructure, mechanical properties and electrochemical behavior of AA1050 processed by accumulative roll bonding (ARB)ˮ, Journal of Alloys and Compounds, Vol. 688, pp. 44-55, 2016.
[22] M. Eizadjou, H. D. Manesh & K. Janghorban, “Microstructure and mechanical properties of ultra-fine grains (UFGs) aluminum strips produced by ARB processˮ, Journal of Alloys and Compounds, Vol. 474, No. 1, pp. 406-415, 2009.
[23] G. Williamson & W. Hall, “X-ray line broadening from filed aluminium and wolframˮ, Acta metallurgica, Vol. 1, No. 1, pp. 22-31, 1953.
[24] M. H. Farshidi, M. Kazeminezhad & H. Miyamoto, “Severe plastic deformation of 6061 aluminum alloy tube with pre and post heat treatmentsˮ, Materials Science and Engineering: A, Vol. 563, pp. 60-67, 2013.
[25] V. Bratov & E. Borodin, “Comparison of dislocation density based approaches for prediction of defect structure evolution in aluminium and copper processed by ECAPˮ, Materials Science and Engineering: A, Vol. 631, pp. 10-17, 2015.
[26] H. J. Roven, M. Liu & J. C. Werenskiold, “Dynamic precipitation during severe plastic deformation of an Al–Mg–Si aluminium alloyˮ, Materials Science and Engineering: A, Vol. 483, pp. 54-58, 2008.
[27] R. Jamaati, M. R. Toroghinejad, J. Dutkiewicz & J. A. Szpunar, “Investigation of nanostructured Al/Al 2 O 3 composite produced by accumulative roll bonding processˮ, Materials & Design, Vol. 35, pp. 37-42, 2012.
[28] J. Z. Zhao, A. K. De & B. C. De Cooman, “Kinetics of Cottrell atmosphere formation during strain aging of ultra-low carbon steelsˮ, Materials Letters, Vol. 44, No. 6, pp. 374-378, 2000.
[29] K. Ma, H. Wen, T. Hu, T. D. Topping, D. Isheim, D. N. Seidman, E. J. Lavernia & J. M. Schoenung, “Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloyˮ, Acta Materialia, Vol. 62, pp. 141-155, 2014.
[30] V. Rajkovic, D. Bozic, J. Stasic, H. Wang & M. T. Jovanovic, “Processing, characterization and properties of copper-based composites strengthened by low amount of alumina particlesˮ, Powder Technology, Vol. 268, pp. 392-400, 2014.
[31] N. Kamikawa, X. Huang, N. Tsuji & N. Hansen, “Strengthening mechanisms in nanostructured high-purity aluminium deformed to high strain and annealedˮ, Acta Materialia, Vol. 57, No. 14, pp. 4198-4208, 2009.
[32] M. Rezaei, S. Shabestari & S. Razavi, “Effect of ECAP consolidation temperature on the microstructure and mechanical properties of Al-Cu-Ti metallic glass reinforced aluminum matrix compositeˮ, Journal of Materials Science & Technology, 2017.
[33] B. Li, A. Godfrey, Q. Meng, Q. Liu & N. Hansen, “Microstructural evolution of IF-steel during cold rollingˮ, Acta Materialia, Vol. 52, No. 4, pp. 1069-1081, 2004.
[34] S. Malopheyev, V. Kulitskiy & R. Kaibyshev, “Deformation structures and strengthening mechanisms in an Al Mg Sc Zr alloy, Journal of Alloys and Compoundsˮ, Vol. 698, pp. 957-966, 2017.
[35] N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki & T. Furuhara, “Stress–strain behavior of ferrite and bainite with nano-precipitation in low carbon steelsˮ, Acta Materialia, Vol. 83, pp. 383-396, 2015.