ارزیابی فعالیت فتوکاتالیتیکی پوشش کامپوزیتی ZnFe2O4-TiO2 ایجاد شده توسط فرایند پاشش شعله ای

نوع مقاله: علمی-پژوهشی

نویسندگان

دانشگاه صنعتی اصفهان

چکیده

در میان روش های مختلفی که برای تخریب آلاینده های شیمیایی مورد استفاده قرار گرفته است، فرایندهای اکسایش پیشرفته (مانند فرایند فتوکاتالیتیکی) به دلیل ویژگی های خاص خود مورد توجه قرار گرفته اند. در این پژوهش، پوشش کامپوزیتی ZnFe2O4-10wt% TiO2 به روش پاشش شعله ای تولید شده است. پودرهای تیتانیا (TiO2 با 75% آناتاز و 25% روتیل) و فریت روی (ZnFe2O4) سنتز شده توسط فرایند آلیاژسازی مکانیکی با یکدیگر مخلوط (با نسبت وزنی 1 به 9) و بر روی زیرلایه ای از فولاد زنگ نزن 316 پوشش داده شدند. برای ارزیابی ساختار، مورفولوژی و شدت جذب نور پوشش، به ترتیب دستگاه های پراش پرتو ایکس(XRD)، میکروسکوپ الکترونی روبشی (SEM) و اسپکتروفتومتر UV-VIS-NIR مورد استفاده قرار گرفته اند. فعالیت فتوکاتالیتیکی پوشش ایجاد شده، توسط رنگ زدایی محلول رنگی متیلن بلو با غلظت mg/Lit 5 مورد ارزیابی قرار گرفته است. نتایج ارزیابی ها نشان داده است که پوشش کامپوزیتی حاصل از فرایند پاشش شعله ای، دارای جذب نور و فعالیت فتوکاتالیتیکی نسبتا مناسبی در تخریب فتوکاتالیتیکی رنگ متیلن بلو (تحت تابش نور مرئی) است.

کلیدواژه‌ها


 

[1]     N. L. Nemerow, F. J. Agardy, P. Sullivan & J. A. Salvato, “Environmental engineering: water, wastewater, soil and groundwater treatment and remediation”, John Wiley & Sons, New York, 2009.

 

[2]     N. Daneshvar, S. Aber, V. Vatanpour & M. H. Rasoulifard, “Electro-fenton treatment of dye solution containing orange II, Influence of operational parameters”, Journal of Electroanalytical Chemistry, Vol. 615, pp. 165-174, 2008.

 

[3]     Lopes, S. Martins, A. Morao, M. Magrinho & I. Goncalves, “Degradation of a textile dye C. I. direct red 80 by electrochemical processes”, Portugaliae Electrochimica Acta, Vol. 22, pp. 279-294, 2004.

 

[4]     W. Somasiri, X. F. Li, W. Q. Ruan & C. Jian, “Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of colour and reduction of COD in real textile wastewater”, Bioresource Technology, Vol. 99, pp. 3692-3699, 2008.

 

[5]       ح. موحدیان عطار و ر. رضایی، "بررسی کارآیی فناوری اکسیداسیون فتوشیمیایی پیشرفته (APO) در تجزیه رنگزای پلی آزوی مستقیم با فرآیند UV/H2O2"، مجله آب و فاضلاب، شماره 59، صفحه 83-75، 1385.

 

[6]     Y. Peng, D. Fu, R. Liu, F. Zhang & X. Liang, “NaNO2/FeCl3 catalyzed wet oxidation of the azo dye acid orange 7”, Chemosphere, Vol. 71, pp. 990-997, 2008.

 

[7]     T. Joshi, L. Iyengar, K. Singh & S. Garg, “Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes”, Bioresource Technology, Vol. 99, pp. 7115-7121, 2008.

 

[8]       ع. اسدی، ر. ناطقی، س. ناصری، م. محمدیان، ح. محمدی و غ. بنیادی نژاد، "کاربرد فرایند فتوکاتالیستی UV/NiO در حذف رنگزای پلی آزوی مستقیم" مجله آب و فاضلاب، شماره 3، صفحه 84-78، 1391.

 

[9]     W. Zhou, L. Lin, W. Wang, L. Zhang, Q. Wu, J. Li & L. Guo, “Hierarchial mesoporous hematite with electron-transport channels and its improved performances in photocatalysis and lithium ion batteries”, The Journal of Physicsl Chemistry C, Vol. 115, pp. 7126-7133, 2011.

 

[10] J. Bandara, U. Klehm & J. Kiwi, “Raschig rings-Fe2O3 composite photocatalyst activate in the degradation of 4-chlorophenol and Orange II under daylight irradiationˮ, Applied Catalysis B: Environmental, Vol. 76, pp. 73-81, 2007.

 

[11] S. Mozia, M. Tomaszewska & A. W. Morawski, “Photocatalytic degradation of azo-dye Acid Red 18ˮ, Desalination, Vol. 185, pp. 449-456, 2005.

 

[12] N. Daneshvar, D. Salari & A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 157, pp. 111-116, 2003.

 

[13] N. Daneshvar, D. Salari & A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 162, pp. 317-322, 2004.

 

[14]    ا. جمال، ا. غلامپور، س. جانی تباردرزی و ع. رضایی، "بررسی کاربرد فتوکاتالیست­ها و نانو فتوکاتالیست­ها در حذف آلاینده­های زیست محیطی و مکانیسم اثر آن­ها"، اولین همایش تخصصی محیط زیست، 1385.

 

[15] Akyol, H. C. Yatmaz & M. Bayramoglu, “Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions”, Applied Catalysis B: Environmental, Vol. 54, pp. 19-24, 2004.

 

[16] X. Xu, C. Randorn, P. Efstathiou & J. T. S. Irvine, “A red metallic oxide photocatalyst”, Nature Materials, Vol. 11, pp. 595-598, 2012.

 

[17] C. Lee, H. Choi, C. Lee & H. Kim, “Photocatalytic properties of nano-structured TiO2 plasma sprayed coating”, Surface and Coatings Technology, Vol. 173, pp. 192-200, 2003.

 

[18]   ا. نکوبین و م. خدیوی، "بررسی و مطالعه عملکرد سنسور گازی ساخته شده از پوشش نانو سیمی اکسید روی"، مجله فرآیندهای نوین در مهندسی مواد، شماره 3، صفحه 113-107، 1392.

 

[19]    ح. غیور، ا. نکوبین و ا. ع. نوربخش، "پوشش نانو سیم­های اکسید روی بر روی الکترود آرایه­های درهم تنیده طلا و بررسی عملکرد نانو حسگر گازهای الکلی"، مجله فرآیندهای نوین در مهندسی مواد، شماره 2، صفحه 22-13، 1395.

 

[20] M. Miki-Yoshida, V. Collins-Martinez, P. Amezaga-Madrid & A. Aguilar-Elguezabal, “Thin films of photocatalytic TiO2 and ZnO deposited inside a tubing by spray pyrolysis”, Thin Solid Films, Vol. 419, pp. 60-64, 2002.

 

[21] S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy & V. Murugesan, “Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials and Solar Cells”, Vol. 77, pp. 65-82, 2003.

 

[22] Khazaei, A. Ranjbaran, F. Abbasi, M. Khazaei & A. R. Moosavi-Zare, “Synthesis, characterization and application of ZnFe2O4 nanoparticles as A heterogeneous ditopic catalyst for the synthesis of pyrano[2,3-d] pyrimidines”, RSC Advances, Vol. 5, pp. 13643-13647, 2015.

 

[23] D. Paola, E. Garcia-Lopez, G. Marci & L. Palmisano, “A survey of photocatalytic materials for environmental remediation”, Journal of Hazardous Materials, Vol. 211-212, pp. 3-29, 2012.

 

[24] J. Y. Patil, D. Y. Nadargi, J. L. Gurav, I. S. Mulla & S. S. Suryavanshi, “Glycine combusted ZnFe2O4 gas sensor: evaluation of structural, morphological and gas response properties”, Ceramics International, Vol. 40, pp. 10607-10613, 2014.

 

[25] Tahir, K. G. U. Wijayantha, M. Mazhar & V. McKee, “ZnFe2O4 thin films from a single source precursor by aerosol assisted chemical vapour deposition”, Thin Solid Films, Vol. 518, pp. 3664-3668, 2010.

 

[26] Timopheev, A. M. Azevedo, N. A. Sobolev, K. Brachwitz, M. Lorenz, M. Ziese, P. Esquinazi & M. Grundmann, “Magnetic anisotropy of epitaxial zinc ferrite thin films grown by pulsed laser deposition”, Thin Solid Films, Vol. 527, pp. 273-277, 2013.

 

[27] R. Dom, G. Sivakumar, N. Y. Hebalkar, S. V. Joshi & P. H. Borse, “Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying”, Materials Research Bulletin, Vol. 47, pp. 562-570, 2012.

 

[28] Y. Zeng, J. Liu, W. Wu & C. Ding, “Photocatalytic performance of plasma sprayed TiO2−ZnFe2O4coatings”, Surface and Coatings Technology, Vol. 200, pp. 2398-2402, 2005.

 

[29] M. Bozorgtabar, M. Rahimipour & M. Salehi, “Effect of thermal spray processes on anatase–rutile phase transformation in nano-structured TiO2 photo-catalyst coatings”, Surface Engineering, Vol. 26, pp. 422-427, 2010.

 

[30] H. Navidpour, M. Salehi, M. Amirnasr, H. R. Salimijazi, M. Azarpour Siahkali, Y. Kalantari & M. Mohammadnezhad, “Photocatalytic iron oxide coatings produced by thermal spraying process”, Journal of Thermal Spray Technology, Vol. 24, pp. 1487-1497, 2015.

 

[31] M. Bozorgtabar, M. Rahimipour, M. Salehi & M. Jafarpour, “The photo-absorption and surface feature of nano-structured TiO2 coatings”, World Academy of Science, Engineering and Technology, Vol. 56, pp. 346-348, 2011.

 
[32] R. J. Talib, S. Saad, M. R. M. Toff & H. Hashim, “Thermal spray coating technology – a review”, Journal of Solid State Science and Technology, Vol. 11, pp. 109-117, 2003.
 
[33] P. Hu, D. A. Pan, X. F. Wang, J. J. Tian, J. Wang, S. G. Zhang & A. A. Volinsky, “Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition”, Journal of Magnetism and Magnetic Materials, Vol. 323,pp. 569-573, 2011.
 

[34] H. Kaneko, T. Kodama, N. Gokon, Y. Tamaura, K. Lovegrove & A. Luzzi, “Decomposition of Zn-ferrite for O2 generation by concentrated solar radiation”, Solar Energy, Vol. 76, pp. 317-322, 2004.

 

[35] M. Li, B. Peng, L. Chai, N. Peng, H. Yan & D. Hou, “Recovery of iron from zinc leaching residue by selective reduction roasting with carbon”, Vol. 237-238, pp. 323-330, 2012.

 

[36] Y. Tian, D. Wu, X. Jia, B. Yu & S. Zhan, “Core-shell nanostructure of α-Fe2O3/Fe3O4: synthesis and photocatalysis for methyl orange”, Journal of Nanomaterials, Vol. 2011, 5 pages, 2011.

 

[37] R. Dadigala, B. R. Gangapuram, R. Bandi, A. Dasari & V. Guttena, “Synthesis and characterization of C–TiO2/FeTiO3 and CQD/C–TiO2/FeTiO3 photocatalysts with enhanced photocatalytic activities under sunlight irradiation”, Acta Metallurgica Sinica, Vol. 29, pp. 17-27, 2016.

[38] H. Lv, L. Ma, P. Zeng, D. Ke & T. Peng, “Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light”, Journal of Materials Chemistry, Vol. 20, pp. 3665-3672, 2010.

 

 [1]     N. L. Nemerow, F. J. Agardy, P. Sullivan & J. A. Salvato, “Environmental engineering: water, wastewater, soil and groundwater treatment and remediation”, John Wiley & Sons, New York, 2009.

 

[2]     N. Daneshvar, S. Aber, V. Vatanpour & M. H. Rasoulifard, “Electro-fenton treatment of dye solution containing orange II, Influence of operational parameters”, Journal of Electroanalytical Chemistry, Vol. 615, pp. 165-174, 2008.

 

[3]     Lopes, S. Martins, A. Morao, M. Magrinho & I. Goncalves, “Degradation of a textile dye C. I. direct red 80 by electrochemical processes”, Portugaliae Electrochimica Acta, Vol. 22, pp. 279-294, 2004.

 

[4]     W. Somasiri, X. F. Li, W. Q. Ruan & C. Jian, “Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of colour and reduction of COD in real textile wastewater”, Bioresource Technology, Vol. 99, pp. 3692-3699, 2008.

 

[5]       ح. موحدیان عطار و ر. رضایی، "بررسی کارآیی فناوری اکسیداسیون فتوشیمیایی پیشرفته (APO) در تجزیه رنگزای پلی آزوی مستقیم با فرآیند UV/H2O2"، مجله آب و فاضلاب، شماره 59، صفحه 83-75، 1385.

 

[6]     Y. Peng, D. Fu, R. Liu, F. Zhang & X. Liang, “NaNO2/FeCl3 catalyzed wet oxidation of the azo dye acid orange 7”, Chemosphere, Vol. 71, pp. 990-997, 2008.

 

[7]     T. Joshi, L. Iyengar, K. Singh & S. Garg, “Isolation, identification and application of novel bacterial consortium TJ-1 for the decolourization of structurally different azo dyes”, Bioresource Technology, Vol. 99, pp. 7115-7121, 2008.

 

[8]       ع. اسدی، ر. ناطقی، س. ناصری، م. محمدیان، ح. محمدی و غ. بنیادی نژاد، "کاربرد فرایند فتوکاتالیستی UV/NiO در حذف رنگزای پلی آزوی مستقیم" مجله آب و فاضلاب، شماره 3، صفحه 84-78، 1391.

 

[9]     W. Zhou, L. Lin, W. Wang, L. Zhang, Q. Wu, J. Li & L. Guo, “Hierarchial mesoporous hematite with electron-transport channels and its improved performances in photocatalysis and lithium ion batteries”, The Journal of Physicsl Chemistry C, Vol. 115, pp. 7126-7133, 2011.

 

[10] J. Bandara, U. Klehm & J. Kiwi, “Raschig rings-Fe2O3 composite photocatalyst activate in the degradation of 4-chlorophenol and Orange II under daylight irradiationˮ, Applied Catalysis B: Environmental, Vol. 76, pp. 73-81, 2007.

 

[11] S. Mozia, M. Tomaszewska & A. W. Morawski, “Photocatalytic degradation of azo-dye Acid Red 18ˮ, Desalination, Vol. 185, pp. 449-456, 2005.

 

[12] N. Daneshvar, D. Salari & A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water: investigation of the effect of operational parameters”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 157, pp. 111-116, 2003.

 

[13] N. Daneshvar, D. Salari & A. R. Khataee, “Photocatalytic degradation of azo dye acid red 14 in water on ZnO as an alternative catalyst to TiO2”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 162, pp. 317-322, 2004.

 

[14]    ا. جمال، ا. غلامپور، س. جانی تباردرزی و ع. رضایی، "بررسی کاربرد فتوکاتالیست­ها و نانو فتوکاتالیست­ها در حذف آلاینده­های زیست محیطی و مکانیسم اثر آن­ها"، اولین همایش تخصصی محیط زیست، 1385.

 

[15] Akyol, H. C. Yatmaz & M. Bayramoglu, “Photocatalytic decolorization of Remazol Red RR in aqueous ZnO suspensions”, Applied Catalysis B: Environmental, Vol. 54, pp. 19-24, 2004.

 

[16] X. Xu, C. Randorn, P. Efstathiou & J. T. S. Irvine, “A red metallic oxide photocatalyst”, Nature Materials, Vol. 11, pp. 595-598, 2012.

 

[17] C. Lee, H. Choi, C. Lee & H. Kim, “Photocatalytic properties of nano-structured TiO2 plasma sprayed coating”, Surface and Coatings Technology, Vol. 173, pp. 192-200, 2003.

 

[18]   ا. نکوبین و م. خدیوی، "بررسی و مطالعه عملکرد سنسور گازی ساخته شده از پوشش نانو سیمی اکسید روی"، مجله فرآیندهای نوین در مهندسی مواد، شماره 3، صفحه 113-107، 1392.

 

[19]    ح. غیور، ا. نکوبین و ا. ع. نوربخش، "پوشش نانو سیم­های اکسید روی بر روی الکترود آرایه­های درهم تنیده طلا و بررسی عملکرد نانو حسگر گازهای الکلی"، مجله فرآیندهای نوین در مهندسی مواد، شماره 2، صفحه 22-13، 1395.

 

[20] M. Miki-Yoshida, V. Collins-Martinez, P. Amezaga-Madrid & A. Aguilar-Elguezabal, “Thin films of photocatalytic TiO2 and ZnO deposited inside a tubing by spray pyrolysis”, Thin Solid Films, Vol. 419, pp. 60-64, 2002.

 

[21] S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy & V. Murugesan, “Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2, Solar Energy Materials and Solar Cells”, Vol. 77, pp. 65-82, 2003.

 

[22] Khazaei, A. Ranjbaran, F. Abbasi, M. Khazaei & A. R. Moosavi-Zare, “Synthesis, characterization and application of ZnFe2O4 nanoparticles as A heterogeneous ditopic catalyst for the synthesis of pyrano[2,3-d] pyrimidines”, RSC Advances, Vol. 5, pp. 13643-13647, 2015.

 

[23] D. Paola, E. Garcia-Lopez, G. Marci & L. Palmisano, “A survey of photocatalytic materials for environmental remediation”, Journal of Hazardous Materials, Vol. 211-212, pp. 3-29, 2012.

 

[24] J. Y. Patil, D. Y. Nadargi, J. L. Gurav, I. S. Mulla & S. S. Suryavanshi, “Glycine combusted ZnFe2O4 gas sensor: evaluation of structural, morphological and gas response properties”, Ceramics International, Vol. 40, pp. 10607-10613, 2014.

 

[25] Tahir, K. G. U. Wijayantha, M. Mazhar & V. McKee, “ZnFe2O4 thin films from a single source precursor by aerosol assisted chemical vapour deposition”, Thin Solid Films, Vol. 518, pp. 3664-3668, 2010.

 

[26] Timopheev, A. M. Azevedo, N. A. Sobolev, K. Brachwitz, M. Lorenz, M. Ziese, P. Esquinazi & M. Grundmann, “Magnetic anisotropy of epitaxial zinc ferrite thin films grown by pulsed laser deposition”, Thin Solid Films, Vol. 527, pp. 273-277, 2013.

 

[27] R. Dom, G. Sivakumar, N. Y. Hebalkar, S. V. Joshi & P. H. Borse, “Deposition of nanostructured photocatalytic zinc ferrite films using solution precursor plasma spraying”, Materials Research Bulletin, Vol. 47, pp. 562-570, 2012.

 

[28] Y. Zeng, J. Liu, W. Wu & C. Ding, “Photocatalytic performance of plasma sprayed TiO2−ZnFe2O4coatings”, Surface and Coatings Technology, Vol. 200, pp. 2398-2402, 2005.

 

[29] M. Bozorgtabar, M. Rahimipour & M. Salehi, “Effect of thermal spray processes on anatase–rutile phase transformation in nano-structured TiO2 photo-catalyst coatings”, Surface Engineering, Vol. 26, pp. 422-427, 2010.

 

[30] H. Navidpour, M. Salehi, M. Amirnasr, H. R. Salimijazi, M. Azarpour Siahkali, Y. Kalantari & M. Mohammadnezhad, “Photocatalytic iron oxide coatings produced by thermal spraying process”, Journal of Thermal Spray Technology, Vol. 24, pp. 1487-1497, 2015.

 

[31] M. Bozorgtabar, M. Rahimipour, M. Salehi & M. Jafarpour, “The photo-absorption and surface feature of nano-structured TiO2 coatings”, World Academy of Science, Engineering and Technology, Vol. 56, pp. 346-348, 2011.

 
[32] R. J. Talib, S. Saad, M. R. M. Toff & H. Hashim, “Thermal spray coating technology – a review”, Journal of Solid State Science and Technology, Vol. 11, pp. 109-117, 2003.
 
[33] P. Hu, D. A. Pan, X. F. Wang, J. J. Tian, J. Wang, S. G. Zhang & A. A. Volinsky, “Fuel additives and heat treatment effects on nanocrystalline zinc ferrite phase composition”, Journal of Magnetism and Magnetic Materials, Vol. 323,pp. 569-573, 2011.
 

[34] H. Kaneko, T. Kodama, N. Gokon, Y. Tamaura, K. Lovegrove & A. Luzzi, “Decomposition of Zn-ferrite for O2 generation by concentrated solar radiation”, Solar Energy, Vol. 76, pp. 317-322, 2004.

 

[35] M. Li, B. Peng, L. Chai, N. Peng, H. Yan & D. Hou, “Recovery of iron from zinc leaching residue by selective reduction roasting with carbon”, Vol. 237-238, pp. 323-330, 2012.

 

[36] Y. Tian, D. Wu, X. Jia, B. Yu & S. Zhan, “Core-shell nanostructure of α-Fe2O3/Fe3O4: synthesis and photocatalysis for methyl orange”, Journal of Nanomaterials, Vol. 2011, 5 pages, 2011.

 

[37] R. Dadigala, B. R. Gangapuram, R. Bandi, A. Dasari & V. Guttena, “Synthesis and characterization of C–TiO2/FeTiO3 and CQD/C–TiO2/FeTiO3 photocatalysts with enhanced photocatalytic activities under sunlight irradiation”, Acta Metallurgica Sinica, Vol. 29, pp. 17-27, 2016.

[38] H. Lv, L. Ma, P. Zeng, D. Ke & T. Peng, “Synthesis of floriated ZnFe2O4 with porous nanorod structures and its photocatalytic hydrogen production under visible light”, Journal of Materials Chemistry, Vol. 20, pp. 3665-3672, 2010.

 [39] M. A. Valenzuela, P. Bosch, J. Jimenez-Becerrill, O. Quiroz & A. I. Paez, “Preparation, characterization and photocatalytic activity of ZnO, Fe2O3 and ZnFe2O4”, Journal of Photochemistry and Photobiology A: Chemistry, Vol. 148, pp. 177-182, 2002.