[1] N. A. Melosh, A. Boukai, F. Diana, B. Gerardot, A. Badolato, P. M. Petroff & J. R. Heath, “Ultrahigh-density nanowire lattices and circuits”, Science, Vol. 300, pp. 112-115, 2003.
[2] H. Yan, S. H. Park, G. Finkelstein, J. H. Reif & T. H. LaBean, “DNA-templated self-assembly of protein arrays and highly conductive nanowires”, science, Vol. 301, pp. 1882-1884, 2003.
[3] Y. Xi, C. Hu, C. Zheng, H. Zhang, R. Yang & Y. Tian, “Optical switches based on CdS single nanowire”, Materials Research Bulletin, Vol. 45, pp. 1476-1480, 2010.
[4] E. O. Hall, “The deformation and ageing of mild steel: III discussion of results”, Proceedings of the Physical Society, Section B, Vol. 64, pp. 747, 1951.
[5] J. Diao, K. Gall & M. L. Dunn, “Surface-stress-induced phase transformation in metal nanowires”, Nature Materials, Vol. 2, pp. 656, 2003.
[6] H. S. Park, “Stress-induced martensitic phase transformation in intermetallic nickel aluminum nanowires”, Nano Letters, Vol. 6, pp. 958-962, 2006.
[7] H. S. Park, K. Gall & J. A. Zimmerman, “Shape memory and pseudoelasticity in metal nanowires”, Physical Review Letters, Vol. 95, pp. 255504, 2005.
[8] M. Tahmasebipour & H. Khezerlou, “Molecular Dynamic Simulation of the Graphene Nano-Plates”, Journal of Nanoelectronics and Optoelectronics, Vol. 9, pp. 635-639, 2014.
[9] H. Khezerlou & M. Tahmasebipour, “Poly Methyl Methacrylate (PMMA) Behavior Analysis Using Molecular Dynamics Simulation Method”, Journal of Nanoelectronics and Optoelectronics, Vol. 9, pp. 675-677, 2014.
[10] H. Khezerlou & M. Tahmasebipour, “Molecular dynamic simulation of graphene-poly methyl methacrylate nano-composite”, Journal of Nanoelectronics and Optoelectronics, Vol. 9, pp. 580-583, 2014.
[11] ل. مهری و ج. داودی، "شبیه سازی دینامیک مولکولی ذوب آلیاژ منظم و نامنظمAg-Au"، فصلنامه علمی – پژوهشی فرآیندهای نوین در مهندسی مواد، دوره 3، شماره 2، 18-11، تابستان، 1388.
[12] C. Ji & H. S. Park, “The coupled effects of geometry and surface orientation on the mechanical properties of metal nanowires”, Nanotechnology, Vol. 18, pp. 305704, 2007.
[13] Z. Wu, Y. W. Zhang, M. H. Jhon, H. Gao & D. J. Srolovitz, “Nanowire failure: Long= brittle and short= ductile”, Nano Letters, Vol. 12, pp. 910-914, 2012.
[14] B. Wang, D. Shi, J. Jia, G. Wang, X. Chen & J. Zhao, “Elastic and plastic deformations of nickel nanowires under uniaxial compression”, Physica E: Low-Dimensional Systems and Nanostructures, Vol. 30, pp. 45-50, 2005.
[15] S. G. Volz & G. Chen, “Molecular dynamics simulation of thermal conductivity of silicon nanowires”, Applied Physics Letters, Vol. 75, pp. 2056-2058, 1999.
[16] Setoodeh, H. Attariani & M. Khosrownejad, “Nickel nanowires under uniaxial loads: A molecular dynamics simulation study”, Computational Materials Science, Vol. 44, pp. 378-384, 2008.
[17] L. Miao, V. R. Bhethanabotla & B. Joseph, “Melting of Pd clusters and nanowires: a comparison study using molecular dynamics simulation”, Physical Review B, Vol. 72, pp. 134109, 2005.
[18] H. A. Wu, “Molecular dynamics study on mechanics of metal nanowire”, Mechanics Research Communications, Vol. 33, pp. 9-16, 2006.
[19] S. J. A. Koh, H. P. Lee, C. Lu & Q. H. Cheng, “Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects”, Physical Review B, Vol. 72, pp. 085414, 2005.
[20] B. Ma, Q. Rao & Y. He, “Molecular dynamics simulation of temperature effect on tensile mechanical properties of single crystal tungsten nanowire”, Computational Materials Science, Vol. 117, pp. 40-44, 2016.
[21] L. Chang, C. Y. Zhou, L. L. Wen, J. Li & X. H. He, “Molecular dynamics study of strain rate effects on tensile behavior of single crystal titanium nanowire”, Computational Materials Science, Vol. 128, pp. 348-358, 2017.
[22] H. Liang, M. Upmanyu & H. Huang, “Size-dependent elasticity of nanowires: nonlinear effects”, Physical Review B, Vol. 71, pp. 241403, 2005.
[23] M. R. Sørensen, M. Brandbyge & K. W. Jacobsen, “Mechanical deformation of atomic-scale metallic contacts: structure and mechanisms”, Physical Review B, Vol. 57, pp. 3283, 1998.
[24] Nakamura, M. Brandbyge, L. B. Hansen & K. W. Jacobsen, “Density functional simulation of a breaking nanowire”, Physical Review Letters, Vol. 82, pp. 1538, 1999.
[25] X. W. Zhou, R. A. Johnson & H. N. G. Wadley, “Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers”, Physical Review B, Vol. 69, pp. 144113, 2004.
[26] X. W. Zhou & H. N. G. Wadley, “Atomistic simulation of the vapor deposition of Ni/Cu/Ni multilayers: Incident adatom angle effects”, Journal of Applied Physics, Vol. 87, pp. 553-563, 2000.
[27] X. W. Zhou, H. N. G. Wadley, R. A. Johnson, D. J. Larson, N. Tabat, A. Cerezo, A. K. Petford-Long, G. D. W. Smith, P. H. Clifton, R. L. Martens & T. F. Kelly, “Atomic scale structure of sputtered metal multilayers”, Acta Materialia, Vol. 49, pp. 4005-4015, 2001.
[28] H. A. Wu, “Molecular dynamics study of the mechanics of metal nanowires at finite temperature”, European Journal of Mechanics-A/Solids, Vol. 25, pp. 370-377, 2006.
[29] M. Doyama & Y. Kogure, “Embedded atom potentials in fcc and bcc metals”, Computational Materials Science, Vol. 14, pp. 80-83, 1999.
[30] F. Kassubek, C. A. Stafford, H. Grabert & R. E. Goldstein, “Quantum suppression of the Rayleigh instability in nanowires”, Nonlinearity, Vol. 14, pp. 167, 2001.
[31] F. Sato, A. S. Moreira, P. Z. Coura, S. O. Dantas, S. B. Legoas, D. Ugarte & D. S. Galvao, “Computer simulations of gold nanowire formation: the role of outlayer atoms”, Applied Physics A, Vol. 81, pp. 1527-1531, 2005.
[32] R. Liang, A. S. Khan, “A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures”, International Journal of Plasticity, Vol. 15, pp. 963–980, 1999.