[1] J. Mehta, V. K. Mittal & P. Gupta, “Role of thermal spray coatings on wear, erosion and corrosion behavior: a review”, Applied Science and Engineering, Vol. 20, pp. 445-452, 2017.
[2] P. L. Fauchais, J. V. R. Heberlein & M. I. Boulos, “Thermal spray fundamentals”, Springer, 2014.
[3] M. Akhtari-Zavareh, A. A. D. Mohammed Sarhan & B. B. AbdRazak, “Plasma thermal spray of ceramic oxide coating on carbon steel with enhanced wear and corrosion resistance for oil and gas applications”, Ceramics International, Vol. 40, pp. 14267-14277, 2014.
[4] R. F. Bunshah, “Handbook of hard coatings”, Chapter3, NOYES Publications, New York, USA, 2001.
[5] A. Vardelle, et al., “The 2016 plasma roadmap: low temperature plasma science and technology”, Journal of Thermal Spray Technology, Vol. 25, pp. 1376-1440, 2016.
[6] I. Adamovich, S. D. Baalrud, A. Bogaert, P. J. Bruggeman, M. Cappelli, V. Colombo, U. Czarnetzki, U. Ebert, J. G. Eden & P. Favia, “The 2017 plasma roadmap: low temperature plasma science and technology”, Journal of Physics D: Applied Physics, Vol. 50, pp. 1–46, 2017.
[7] M. Gell, E. H. Jordan, & D. Goberman, “Development and implementation of plasma sprayed nanostructured ceramic coatings”, Surfaceand Coatings Technology, Vol. 146, pp. 48–54, 2001.
[8] D. Ghosh, A. K. Shukla & H. Roy, “Nano structured plasma spray coating for wear and high temperature corrosion resistance applications”, Journal of the Institution of the Engineers, Vol. 95, pp. 57–64, 2014.
[9] W. M. Rainforth, “The wear behaviour of oxide ceramics- a review”, Journal of Materials Science, Vol. 39, pp. 6705–6721, 2004.
[10] A. Cellard, V. Garnier, G. Fantozzi, G. Baret, & P. Fort, “Wear resistance of chromium oxide nanostructured coatings”, Ceramics International, Vol. 35, pp. 913–916, 2009.
[11] V. P. Singh, A. Sil & R. Jayaganthan, “Wear of plasma sprayed conventional and nanostructured Al2O3 and Cr2O3, based coatings”, Transactions of the Indian Institute of Metals, Vol. 65, pp. 1–12, 2012.
[12] R. S. Lima & B. R. Marple, “Thermal spray coatings engineered from nanostructured ceramic agglomerated powders for structural, thermal barrier and biomedical applications: a review”, Journal of Thermal Spray Technology, Vol. 16, pp. 40-63, 2007.
[13] P. S. Babu, D. Sen, A. Jyothirmayi, L. RamaKrishna & D. SrinivasaRao, “Influence of microstructure on the wear and corrosion behavior of detonation sprayed Cr2O3-Al2O3 and plasma sprayed Cr2O3 coatings”, Ceramics International, Vol. 44, pp. 2351-2357, 2018.
[14] م. طهری، "بررسی تأثیر افزودن تقویتکننده Cr
2O
3 بر خواص مکانیکی و رفتار اکسیداسیون دمای بالای پوشش استلایت 6 تولید شده به روش پاشش پلاسمایی بر روی زیرلایه IN-738"، فرآیندهای نوین در مهندسی مواد،
دوره 11، شماره 1، صفحه 160-149، بهار 1396.
[15] K. V. S. Rao, C. S. Ramesh, K. G. Girishaa & Y.D. Rakesh, “Slurry erosive wear behavior of plasma sprayed Cr2O3 coatings on steel substrates”, Materials today: proceedings, Vol. 4, pp. 10283-10287, 2017.
[16] P. Zamani & Z. Valefi, “Microstructure, phase composition and mechanical properties of plasma sprayed Al2O3, Cr2O3 and Cr2O3-Al2O3 composite coatings”, Surface and Coatings Technology, vol. 316, pp. 138-145, 2017.
[17] L. Vernhes, C. Bekins, N. Lourdel & R.S. Lima, “Nanostructured and conventional Cr2O3, TiO2, and TiO2-Cr2O3 thermal-sprayed coatings for metal-seated ball valve applications in hydrometallurgy”, Journal of Thermal Spray Technology, Vol. 25, pp. 1068–1078, 2016.
[18] B. Cantor, F. Dunne & I. Stone, “Metal and Ceramic Matrix Composites”, IOP Publishing Ltd, 2004.
[19] L. M. Berger, “Thermal sprayed coatings and their tribological performances”, Chapter 8: Tribology of thermally sprayed coatings in the Al2O3-Cr2O3-TiO2 system, Fraunhofer Institute IWS, Germany, pp. 227-267, 2015.
[20] O. Roberts, A. J. G. Lunt, S. Ying, T. Sui, N. Baimpas, I.P. Dolbnya, M. Parkes, D. Dini, S. M. Kreynin, T. K. Neo &A.M. Korsunsky, “A study of phase transformation at the surface of a zirconia ceramic”, in: Proc. World Congr. Eng. Vol II, London, UK, 2014.
[21] N. Zhang & M. A. Zaeem, “Competing mechanisms between dislocation and phase transformation in plastic deformation of single crystalline Yttria-Stabilized tetragonal zirconia nanopillars”, Acta Materialia, Vol. 120, pp. 337–347, 2016.
[22] J. W. Murraya, A. Levaa, Sh. Joshib & T. Hussain, “Microstructure and wear behaviour of powder and suspension hybrid Al2O3–YSZ coatings”, Ceramics International, Vol. 44, pp. 8498-8504, 2018.
[23] A. Nastic, A. Merati & M. Bielawski, “Instrumented and Vickers indentation for the characterization of stiffness, hardness and toughness of zirconia toughened Al2O3 and SiC armor”, Journal of Materials Science & Technology, Vol. 31, pp. 773-783, 2015.
[24] J. Gou, J. Zhang & Q. Zhang, “Effect of nano-Si3N4 additives and plasma treatment on the dry sliding wear behavior of plasma sprayed Al2O3-8YSZ ceramic coatings, Journal of Thermal Spray Technology, Vol. 26, pp. 764–777, 2017.
[25] E. Bakan, & R. Vaben, “Ceramic top coats of plasma-sprayed thermal barrier coatings: Materials, processes, and properties”, Journal of Thermal Spray Technology, Vol. 26, pp. 992-1010, 2017.
[26] S. R. Choi, D. Zhu, & R. A. Miller, “Mechanical properties/database of plasma sprayed ZrO2-8wt% Y2O3 thermal barrier coatings”, International Journal of Applied ceramic technology, Vol. 1, pp. 330-342, 2005.
[27] س. ع. صادقی فدکی، ض. والفی و ک. زنگنه مدار، "ارزیابی میکرو ساختاری پوششهای YSZ پاشش پلاسمایی"، فرآیندهای نوین در مهندسی مواد، دوره 9، شماره 1، صفحه 105-95، بهار 1394.
[28] J. R. Davis, “Handbook of thermal spray technology”, ASM International, 2004.
[29] R. Banerjee & I. Manna, “Ceramic nanocomposites”, Woodhead Publishing Limited, 2013.
[30] K. Strecker, S. Ribeiro & M. J. Hoffmann, “Fracture toughness measurements of LPS-SiC: a comparison of the indentation technique and the SEVNB method”, Materials Research, Vol. 8, pp. 121-124, 2005.
[31] D. K. Shetty, I. G. Wright & P. N. Mincer, “Indentation fracture of WC-Co cermets”, Journal of Materials Science, Vol. 20, pp. 1873-1882, 1985.
[32] E. I. C. Suryanarayana & T. Klassen, “Synthesis of nanocomposites and amorphous alloys by mechanical alloying”, Journal of Materials Science, Vol. 46, pp. 6301–6315, 2011.
[33] E. P. Song, J. Ahn & S. Lee, “Microstructure and wear resistance of nanostructured Al2O3–8wt.%TiO2 coatings plasma-sprayed with nanopowders”, Surface and Coatings Technology, Vol. 201, pp. 1309–1315, 2006.
[34] J. Ahn, B. Hwang & E. P. Song, “Correlation of microstructure and wear resistance of Al2O3-TiO2 coatings plasma sprayed with nanopowders”, Metallurgical and Materials Transactions A, Vol. 37, pp. 1851-1861, 2006.
[35] N. L. Parthasarathi, U. Borah & Sh. K. Albert, “Correlation between coefficient of friction and surface roughness in dry sliding wear of AISI 316L stainless steel at elevated temperatures”, Computer Modeling and New Technologies, Vol. 17, pp. 51-63, 2013.
[36] H. Czichos, “A systems approach to the science and technology of friction, lubrication and wear”, Tribology series 1, 1978.
[37] A. Amanov & Y. S. Pyun, “Friction reduction and wear resistance enhancement of SiC and Si3N4 ceramics under dry conditions”, Tribology Transactions, Vol. 59, pp. 491-501, 2016.
[38] Y. Zhou, H. Zhu, W. Zhang, X. Zuo, Y. Li, & J. Yang, Influence of surface roughness on the friction property of textured surface, Advances in Mechanical Engineering, pp 1-9, 2015.
[39] S. T. Aruna, N. Balaji & K. S. Rajam, “Phase transformation and wear studies of plasma sprayed yttria stabilized zirconia coatings containing various mol% of yttria”, Materials Characterization, Vol. 62, pp. 697–705, 2011.
[40] P. Ganapathy, G. Manivasagam, S. Rajamanickam, & A. Natarajan, “Wear studies on plasma-sprayed Al2O3 and 8mole% of Yttrium-stabilized ZrO2 composite coating on biomedical Ti-6Al-4V alloy for orthopedic joint application”, International Journal of Nanomedicine, Vol. 10, pp. 213-222, 2015.
[41] ر. رحیمزاده، ع. شفیعی و ک. امینی، "بررسی ریزساختار و خواص سایشی پوششهای NiCrAlY تقویتشده با ذرات Al
2O
3 اعمالی به روش پاشش پلاسمایی"، فرآیندهای نوین در مهندسی مواد،
دوره 12، شماره 1، صفحه 57-41، بهار 1397.
[42] S. T. Siegmann, O. Brandt, & N. Margadant, Tribological Requirements of Thermally Sprayed Coatings for Wear Resistant Applications, 1st International Thermal Spray Conference - Thermal Spray: Surface Engineering via Applied Research, Quebec, Canada, pp. 1135-1140, 2000.
[43] K. Yang, X. Zhou & Ch. Liu, “Sliding wear performance of plasma-sprayed Al2O3-Cr2O3 composite coatings against graphite under severe conditions”, Journal of Thermal Spray Technology, Vol. 22, pp. 1154-1162, 2013.
[44] Y. Wang & S. M. Hsu, “Wear and wear transition mechanisms of ceramics”, wear, Vol. 195, pp. 12-122, 1996.
[45] J. Jie, L. Huan & L. Xiaohan, “Friction and wear behavior of micro arc oxidation coatings on magnesium alloy at high temperature”, Rare Metal Materials and Engineering, Vol. 46, pp. 1202-1206, 2017.
[46] F. Onoue & K. Tsuji, “X-Ray elemental imaging in depth by combination of FE-SEM-EDS and glow discharge sputtering”, ISIJ International, Vol. 53, pp. 1939–1942, 2013.
[47] A. Kulkarni, J. Gutleber & S. Sampath, “Studies of the microstructure and properties of dense ceramic coatings produced by high-velocity oxygen-fuel combustion spraying”, Materials Science and Engineering A, Vol. 369, pp. 124-137, 2004.
[48] Y. Xie & H. M. Hawthorne, “Wear mechanism of plasma-sprayed alumina coating in sliding contacts with harder asperities”, Wear, Vol. 225, pp. 90-103, 1999.
[49] S. M. Hsu & M. Shen, “Wear prediction of ceramics”, Wear, Vol. 256, pp. 867-878, 2004.
[50] L. Berger, C. C. Stahr & S. Saaro, “Development of ceramic coatings in the Cr2O3-TiO2 system”, Thermal Spray Bulletin, Vol. 2, pp 64-77, 2009.
51] S. Jahanmir, “Friction and wear of ceramics”, Chapter 11, CRC Press, 2010.
[52] T. E. Fischer, M. P. Anderson & S. Jahanmir, “Influence of fracture toughness on the wear resistance of Yttria-doped zirconium oxide”, Journal of American Ceramic Society, Vol. 72, pp. 252-257, 1989.
[53] L. Wu, X. Guo & J. Zhang, “Abrasive resistant coatings- a review”, Lubricants, Vol. 2, pp. 66-89, 2014.
[54] P. Svec, A. Brusilova & J. Kozankova, “Effect of microstructure and mechanical properties on wear resistance of silicon nitride ceramics”, Materials Engineering, Vol. 16, pp. 34-40, 2008.