تأثیر دما، ولتاژ، زمان آندایزینگ و اعمال پوشش الکترولس نیکل-فسفر روی رفتار خوردگی و سختی آلیاژ آلومینیم 2024

نوع مقاله: علمی-پژوهشی

نویسندگان

1 کارشناسی ارشد، دانشکده مهندسی مواد، دانشگاه صنعتی اصفهان، اصفهان، ایران

2 دانشگاه صنعتی اصفهان

چکیده

به‌منظور بهبود خواص سطحی و درنتیجه کاربرد بیشتر آلومینیم و آلیاژهای آن در صنایع مختلف بخصوص هوافضا از روش‌های مختلف پوشش دهی استفاده می‌شود. آندایزینگ و آبکاری الکترولس از روش‌های پرکاربرد برای این هدف است. در پژوهش حاضر ابتدا اثر دما و ولتاژ آندایزینگ بر خواص لایه اکسید سطحی آلیاژ آلومینیم 2024 بررسی شد. نتایج نشان داد که با افزایش ولتاژ و کاهش دما، ضخامت و زبری سطح افزایش یافت؛ اما یک ولتاژ بهینه (v45) برای دستیابی به بیشترین سختی در تمامی دماها به دست آمد. مطالعه ضخامت و سختی نمونه بهینه نیز حاکی از افزایش این دو پارامتر با افزایش زمان داشت. بررسی‌های صورت گرفته به‌وسیله میکروسکوپ الکترونی نشرمیدانی (FESEM) نیز نشان داد با کنترل دقیق شرایط آندایزینگ می‌توان به ساختاری با نانو سلول‌های منظم دست‌یافت. انجام آندایزینگ دومرحله‌ای نیز نظم سلول‌های لایه اکسیدی را به‌طور قابل‌ملاحظه‌ای افزایش داد. همچنین بررسی‌های صورت گرفته به‌وسیله میکروسکوپ الکترونی (SEM)، طیف نگار تفکیک انرژی (EDS) و پراش اشعه ایکس (XRD) نشان داد که امکان ایجاد پوشش الکترولس نیکل-فسفر بر آلیاژ آلومینیم آندایز شده به‌خوبی وجود دارد. برای مقایسه رفتار خوردگی پوشش­های (Anodic Aluminium Oxid) AAO و هیبریدی AAO/Ni-P با زیرلایه آلومینیمی از روش پلاریزاسیون و برون­یابی تافل استفاده شد. نتایج حاکی از مقاومت به خوردگی بالای آلیاژ آلومینیم 2024 در حضور پوشش الکترولس نیکل- فسفر بر آلیاژ آندایز شده می­باشد. عملیات حرارتی نمونه‌ها در دماهای مختلف نشان داد که بیشترین سختی پوشش نهایی (1185 ویکرز) در دمای 400 درجه سلسیوس به دست خواهد آمد و زمان عملیات حرارتی در این دما بعد از 75 دقیقه تأثیر چندانی بر سختی نخواهد داشت.

کلیدواژه‌ها

موضوعات


[1] M. Shiota, “Recent trend of casting and die casting aluminum alloys for automotive parts [J]”, J Jpn Inst Light Met, Vol. 55, pp. 524-528, 2005.

 

[2] ر. گیلاکجانی، ف.  محبوبی و م. علیشاهی، "بررسی رفتار خوردگی و تریبولوژیکی پوشش الکترولس نانو کامپوزیتی Ni-P-SiC اعمال‌شده روی سطح آلومینیم Al6061"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال هشتم، شماره دوم، تابستان 1393.

 

[3] H. Bahri, I. Danaee, G. R. Rashed & A. Dabiri, A. R., “Scratch and wear resistance of nano-silica-modified silicate conversion coating on aluminium”, Materials Science and Technology, Vol. 32, pp. 1346-1353, 2016.

 

[4] W. Lee, K. Schwirn, M. Steinhart, E. Pippel, R. Scholz & U. Gösele, “Structural engineering of nanoporous anodic aluminium oxide by pulse anodization of aluminium”, Nature nanotechnology, Vol. 3, pp. 234-239, 2008.

 

[5] R. K. Choudhary, P. Mishra, V. Kain, K. Singh, S. Kumar & J. K. Chakravartty,  “Scratch behavior of aluminum anodized in oxalic acid: effect of anodizing potential”, Surface and Coatings Technology, Vol. 283, pp. 135-147, 2015.

 

[6] Sh. Nakamura, M. Saito, L. M. Huang, M. Miyagi & K. Wada, “Infrared Optical Constants of Anodic Alumina Films with Micropore Arrays”, Jpn. J. Appl. Phys. Vol. 31, pp. 3589-3593, 1992.

 

[7] T. Aerts, T. Dimogerontakis, I. De Graeve, J. Fransaer & H. Terryn, “Influence of the anodizing temperature on the porosity and the mechanical properties of the porous anodic oxide film”, Surface and Coatings Technology, Vol. 201, pp. 7310-7317, 2007.

 

[8] L. Bouchama, N. Azzouz, N. Boukmouche, J. P. Chopart, A. L. Daltin & Y. Bouznit, “Enhancing aluminum corrosion resistance by two-step anodizing process”, Surface and Coatings Technology, Vol. 235, pp.676-684, 2013.

 

[9] L. E. Fratila-Apachitei, J. Duszczyk & L. Katgerman, “Voltage transients and morphology of AlSi (Cu) anodic oxide layers formed in H 2 SO 4 at low temperature”, Surface and Coatings Technology,Vol. 157, pp. 80-94, 2002.

 

[10] L. Sobotova, M. Badida, J. Kmec, M. Gombar & D. Kucerka, “The Simulation of the Electrolyte Temperature Effect on the Value Change of the Microhardness of Anodic Alumina Oxide Layers”, Applied Mechanics and Materials, Vol. 752, pp. 30-34, 2015.

 

[11] L. E. Fratila-Apachitei, J. Duszczyk & L. Katgerman, “Vickers microhardness of AlSi (Cu) anodic oxide layers formed in H2 SO4 at low temperature”, Surface and Coatings Technology, Vol. 165, pp. 309-315, 2003.

 

[12] Y. Goueffon, L. Arurault, S. Fontorbes, C. Mabru, C. Tonon & P. Guigue, “Chemical characteristics, mechanical and thermo-optical properties of black anodic films prepared on 7175 aluminium alloy for space applications”, Materials Chemistry and physics, Vol. 120, pp. 636-642, 2010.

 

[13] C. H. Voon, M. N. Derman, U. Hashim, K. R. Ahmad & K. L. Foo, “Effect of temperature of oxalic acid on the fabrication of porous anodic alumina from Al-Mn alloys”, Journal of Nanomaterials, Vol. 40, pp. 160-168 2013.

 

[14] G. D. Sulka & W. J. Stępniowski, “Structural features of self-organized nanopore arrays formed by anodization of aluminum in oxalic acid at relatively high temperatures”, Electrochimica Acta, Vol. 54, pp. 3683-3691, 2009.

 

[15] J. Wang, C. W. Wang, Y. Li & W. M. Liu, “Optical constants of anodic aluminum oxide films formed in oxalic acid solution”, Thin Solid Films, Vol. 516, pp. 7689-7694, 2008.

 

[16] R. K. Choudhary, K. P. Sreeshma & P. Mishra, “Effect of Surface Roughness of an Electropolished Aluminum Substrate on the Thickness, Morphology, and Hardness of Aluminum Oxide Coatings Formed During Anodization in Oxalic Acid”, Journal of Materials Engineering and Performance, Vol. 26, pp. 3614-3620, 2017.

 

[17] D. Raps, T. Hack, J. Wehr, M. L. Zheludkevich, A. C. Bastos, M. G. S. Ferreira & O. Nuyken, “Electrochemical study of inhibitor-containing organic–inorganic hybrid coatings on AA2024”, Corrosion Science, Vol. 51, pp. 1012-1021, 2009.

 

[18] K. R. Pirota, D. Navas, M. Hernández-Vélez, K. Nielsch & M. Vázquez, “Novel magnetic materials prepared by electrodeposition techniques: arrays of nanowires and multi-layered microwires”, Journal of Alloys and Compounds, Vol. 369, pp. 18-26, 2004.

 

[19] م. علیشاهی، م. ح. بینا و س. م. منیرواقفی، "تشکیل و بررسی اثر درصد CNT بر رفتار خوردگی پوشش الکترولس کامپوزیتی Ni-P-CNT"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال هفتم، شماره سوم، پاییز 1392.

 

[20] J. H. Zhou, J. P. He, P. He, H. X. Zhang, M. Tang, Y. J. Ji & W. J. Dang, “Ternary alloy Ni–W–P nanoparticles electroless deposited within alumina nanopores”, Materials Science and Technology, Vol 24, pp.1250-1253, 2008.

 

[21] م. ح. بیدرام، ک. امینی، ع. شفیعی و م. ح. بینا، "ایجاد پوشش کامپوزیتی نیکل-بور-کاربید تنگستن نانو کریستالی به روش الکترولس و بررسی خواص تریبولوژیکی آن"، فصلنامه علمی پژوهشی فرایندهای نوین در مهندسی مواد، سال هفتم، شماره دوم، تابستان 1392.

 

[22] R. C. Agarwala & V. Agarwala, “Electroless alloy/composite coatings: A review”, Sadhana, Vol. 28, pp. 475-493, 2003.

 

[23] S. Theohari & Ch. Kontogeorgou, "Effect of temperature on the anodizing process of aluminum alloy AA 5052", Applied Surface Science, Vol. 284, pp. 611-618, 2013.

 

[24] M. T. Wu, I. C. Leu & M. H. Hon, “Effect of polishing pretreatment on the fabrication of ordered nanopore arrays on aluminum foils by anodization”, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, Vol. 20, pp. 776-782, 2002.‏

 

[25] J. M. Montero-Moreno, M. Sarret & C. Müller, “Influence of the aluminum surface on the final results of a two-step anodizing”, Surface and Coatings Technology, Vol. 201, pp. 6352-6357, 2007.

 

[26] L. Li & B. Liu, “Study of Ni-catalyst for electroless Ni–P deposition on glass fiber”, Materials Chemistry and Physics, Vol. 128, pp. 303-310, 2011.

 

[27] Y. S. Huang & F. Z. Cui, “Effect of complexing agent on the morphology and microstructure of electroless deposited Ni–P alloy”, Surface and Coatings Technology, Vol. 201, pp. 5416-5418, 2007.

 

[28] S. S. Yazdi, F. Ashrafizadeh & A. Hakimizad, “Improving the grain structure and adhesion of Ni-P coating to 3004 aluminum substrate by nanostructured anodic film interlayer”, Surface and Coatings Technology, Vol. 232, pp. 561-566, 2013.

 

[29] M. Stern & A. Geary, “A Theoretical Analysis of the Shape of Polarization Curves”, Journ of Elecrochem So, Vol. 56. Pp. 68-69, 1957.

 

[30] A. Lugovskoy, M. Zinigrad, A. Kossenko & B. Kazanski, “Production of ceramic layers on aluminum alloys by plasma electrolytic oxidation in alkaline silicate electrolytes”, Applied Surface Science, Vol. 264, pp. 743-747, 2013.

 

[31] D. Raps, T. Hack, J. Wehr, M. L. Zheludkevich, A. C. Bastos, M. G. S. Ferreira & O. Nuyken, “Electrochemical study of inhibitor-containing organic–inorganic hybrid coatings on AA2024”, Corrosion Science, Vol. 51, pp. 1012-1021, 2009.

 

[32] R. O. Hussein, D. O. Northwood & X. Nie, “The influence of pulse timing and current mode on the microstructure and corrosion behaviour of a plasma electrolytic oxidation (PEO) coated AM60B magnesium alloy”, Journal of Alloys and Compounds, Vol. 541, pp. 41-48, 2012.

 

[33] Y. Zuo, P.H.  Zhao & J. M. Zhao, “The influences of sealing methods on corrosion behavior of anodized aluminum alloys in NaCl solutions”, Surface and Coatings Technology, Vol. 166, pp. 237-242, 2003.

 

[34] M. Yan, H. G. Ying & T. Y. Ma, "Improved Microhardness And Wear Resistance Of The Asdeposited Electroless Ni-P Coating", Surface & Coatings Technology Vol. 202, pp. 5909-5913, 2008.

 

[35] K. H. Krishnan, S. John, K. N. Srinivasan, J. Praveen, M. Ganesan & P. M. Kavimani, “An overall aspect of electroless Ni-P depositions- a review article”, Metallurgical and Materials Transactions A, Vol. 37, pp. 1917-1926, 2006.

 

[36] T. Rabizadeh, S. R. Allahkaram & A. Zarebidaki, “An investigation on effects of heat treatment on corrosion properties of Ni–P electroless nano-coatings”, Materials & Design, Vol. 31, pp. 3174-3179, 2010.

 

[37] K. Parker, “The formation of electroless nickel baths”, Plating and Surface Finishing, Vol.74, pp. 60-63, 1981.