بررسی اثر پوشش دهی نانو استیل استونات منگنز بر روی مکانیسم تجزیه حرارتی آمونیوم پرکلرات

نوع مقاله: علمی-پژوهشی

نویسندگان

1 دانشجوی دکتری، شیمی معدنی، دانشگاه صنعتی مالک اشتر، شاهین‌شهر، اصفهان، ایران

2 استادیار، شیمی معدنی، دانشگاه صنعتی مالک اشتر، شاهین‌شهر، اصفهان، ایران

3 دانشیار، شیمی فیزیک، دانشگاه صنعتی اصفهان، اصفهان، ایران

چکیده

برای کاهش دمای تجزیه حرارتی آمونیوم پرکلرات، نانو پوشش استیل استونات منگنز Mn(acac)3 با استفاده از فرایند سل-ژل تهیه و بر روی سطح ذرات آمونیوم پرکلرات پوشش داده شد. تجزیه و تحلیل آنالیز وزن سنجی گرمایی (TG) نانو پوشش استیل استونات منگنز نشان داد که این ترکیب قبل از تجزیه حرارتی آمونیوم پرکلرات به نانو اسپینل منگنز تبدیل می شود و این نانو اسپینل منگنز از طریق مکانیسم انتقال الکترون اثر کاتالیستی خوبی بر روی تجزیه حرارتی کاتالیستی آمونیوم پرکلرات می گذارد. در این مقاله برای اثبات تشکیل نانو پوشش بر روی سطح آمونیوم پرکلرات تصاویر میکروسکوب روبشی (SEM) و الگوی پراش پرتو ایکس (XRD)گرفته شد. برای بررسی نانو کامپوزیت تهیه شده EDS گرفته شد. همچنین اثر کاتالیستی نانو اسپینل منگنز تهیه شده از تجزیه نانو پوشش استیل استونات منگنز، در مکانیسم تجزیه حرارتی آمونیوم پرکلرات توسط تجزیه و تحلیل حرارتی کالری سنجی پویشی دیفرانسیلی (DSC) و آنالیز وزن سنجی گرمایی (TG) مورد بررسی قرار گرفت و باعث کاهش دمای تجزیه برای دو پیک تجزیه آمونیوم پرکلرات به ترتیب از ºC 422 به ºC 318 و از ºC 317 به ºC 279 برای نانو کامپوزیت Mn(acac)3/AP شده است. با توجه به کاهش دمای هر دو پیک تجزیه حرارتی آمونیوم پرکلرات مشخص شد که نانو پوشش استیل استونات اثر بسزایی برروی تجزیه حرارتی آمونیوم پرکلرات داشته است و در نهایت باعث بهبود عملکرد پیشرانه های جامد می شود.

کلیدواژه‌ها

موضوعات


[1] S. Banerjee & S. R. Chakravarthy, "Ammonium Perchlorate-Based Composite Solid Propellant Formulations with Plateau Burning Rate Trends", Translated from Fizika Goreniya i Vzryva. Vol. 43, pp. 73–81, 2007.

[2] M. Celina, L. Minier & R. Assink, "Development and Application of Tools to Characterize the Oxidative Degradation of AP/HTPB/Al Propellants in a Propellant Reliability Study", Thermochimica Acta. Vol. 384, pp. 343-349. 2002.

 

[3] C. Peroni, Y. Guengant, C. Paillard & R. Cabioch, "Porosity characterization through microtomography analysis on thermal damaged AP based propellants", SNPE Energ. Mater. Le Bouchet Research centre and CNRS-LCSR, 2005.

 

[4] V. S. Yazovkin & C. A. Wight, "Kinetics of thermal decomposition of cubic ammonium perchlorate", Chem. Mater. Vol. 11, pp. 3386–3393. 1999.

 

[5] V. V. Boldyrev, "Synthesis of Co Nanoparticles and Their Catalytic Effect on the Decomposition of Ammonium Perchlorate", Thermo. chim. Acta. Vol. 443, pp. 1–36. 2006.

 

[6] L. Rosso & M. E. Tuckerman, "Direct evidence of an anomalous charge transport mechanism in ammonium perchlorate crystal in an ammonia-rich atmosphere from first-principles molecular dynamics", Sol. St. Ion. Vol. 161, pp. 219–229. 2003.

 

[7] V. V. Boldyrev, "Synthesis of Co Nanoparticles and Their Catalytic Effect on the Decomposition of Ammonium Perchlorate", Thermo. chim. Acta. Vol. 443, pp. 1–36. 2006.

 

[8] M. Zou, X. Jiang, L. Lu & X.  Wang, "Nano or micro? A mechanism on thermal decomposition of ammonium perchlorate catalyzed by cobalt oxalate", J. Haz. Mat. Vol. 225, pp. 124– 130. 2012.

 

[9] G. Singh, I. P. Singh Kapoor, R. Dubey & P. Srivastava, "Synthesis, characterization and catalytic behavior of Cu nanoparticles on the thermal decomposition of AP, HMX, NTO and composite solid propellants, Part 83", J. Alloy. Comp. Vol. 513, pp. 499– 505. 2012.

 

[10] Zh. Zhou, Sh. Tian, D. Zeng, G. Tang & Ch. Xie, "MOX (M = Zn, Co, Fe)/AP shell–core nanocomposites for self-catalytical decomposition of ammonium perchlorate", J. Nanomater. J. Alloy. Comp. Vol. 513, pp. 213– 219. 2012.

 

[11] Z. Y. Ma, "Effect of Fe2O3 in Fe2O3/AP Composite Particles on Thermal Decomposition of AP and on Burning Rate of the Composite Propellant", Propell. Explos. Pyrotech. Vol. 31, pp. 447–451. 2006.

 

 [12] E. A. Gheshlaghi, B. Shaabani, A. Y. Khodayari, A. A. Kalandaragh & R. Rahimi, "Preparation of CuO nanopowders and their catalytic activity in photodegradation of Rhodamine-B", Pow. Tech. Vol. 217, pp. 330–339. 2012.

 

[13] F. Davar, F. Mohandes & M. Salavati-Niasari, "Synthesis and characterization manganese oxide nanobundles from decomposition of manganese oxalate", Inorganica. Chimica. Acta. Vol. 362, pp. 3663–3668. 2009.

 

[14] G. Singh, I. P. Singh Kapoor, R. Dubey & P. Srivastava, Preparation, characterization and catalytic effects of copper oxalate nanocrystals", J. Alloys Compd. Vol. 513, pp. 499– 505. 2012.

 

[15] L. Bircomshaw & B. Newman, "Thermal decomposition of ammonium perchlorate", Proc. Roy. Soc. Vol. 227, pp. 228–237. 1995.

 

 [16] A. Galwey & P. Jacobs, "High-temperature thermal decomposition of ammonium perchlorate", J. Chem. Soc. Pp. 837–844. 1959.

                   

[17] A. Hermony & A. Salmon, "The catalytic decomposition of ammonium perchlorate, Eighth Symp.Combust", The Williams and Wolkins Co, Baltimore. pp. 656. 1962.

 

 [18] P. Jacobs & A. Kureishy, The effect of additives on thermal decomposition of ammonium perchlorate, in: Eighth Symp. Combust., The Williams and Wolkins Co, Baltimore, pp. 672–677. 1962.

 

 [19] E. Ayoman & S. Gh. Hosseini, "Synthesis of CuO nanopowders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles", J. Therm. Anal. Calorim. Vol. 123, pp. 1213–1224. 2016.

 

 [20] K. Kishore, V. R. P. Verneker & M. R. Sunitha, "Effect of Manganese Dioxide on the Thermal Decomposition of Ammonium Perchlorate" J. appl. Chem. Biotechnol. Vol. 27, pp. 415-422. 1977.

 

 [21] L. Chen & D. Zhu, "The particle dimension controlling synthesis of a-MnO2 nanowires with enhanced catalytic activity on the thermal decomposition of ammonium perchlorate", Solid State Sci. Vol. 27, pp. 69-72. 2014.

[22] S. Singh, M. P. Chawla, F. Siril & G. Singh, "Manganese oxalate nanorods as ballistic modifier for composite solid propellants", Thermochimica Acta. Vol. 597, pp. 85–92. 2014.

 

[23] C. Shalini & N. Pragnesh, "A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate", Saudi. Chem. Soc. Vol. 17, pp. 135–149. 2013.

 

[24] A. Eslami, S. G. Hosseini & V. Asadi, "The effect of microencapsu-lation with nitrocellulose on thermal properties of sodium azide particles", Prog. Org. Coat. Vol. 65, pp. 269–274. 2009.

 

[25] E. Ayoman & S. Gh. Hosseini, "Synthesis of CuO nanopowders by high-energy ball-milling method and investigation of their catalytic activity on thermal decomposition of ammonium perchlorate particles", J. Therm. Anal. Calorim. Vol. 123, pp. 1213–1224. 2016.

 

 [26] ا. ایومن، م. تحریری و م. تحریری، " بررسی فعالیت کاتالیزوری نانو ذرات اکسید سریم بر تجزیه گرمایی آمونیم پر کلرات"، فرآیندهای نوین در مهندسی مواد، در دست چاپ.

 

[27] م. تحریری، م. مهدوی و ح. فرخ­پور، "بررسی فعالیت کاتالیستی نانو پوشش اگزالات مس بر روی پارامترهای ترمودینامیکی تجزیه حرارتی آمونیم پر کلرات"، فرآیندهای نوین در مهندسی مواد، در دست چاپ.

 

[28] M. S. Shalaby & H. Abdallah, "Preparation of manganese (III) acetylacetonate nanoparticles via an environmentally benign route", Front. Chem. Sci. Eng. Vol. 7, pp. 329–337. 2013.

 

[29] R. H. Holm & F.A. Cotton, "X-Ray Powder Data And Structures Of Some Bis-(Acetylacetono)-Metal(Ii) Compounds and Their Dihydrates" J. Phys. Chem. Vol. 65, pp. 321. 1961.

 

[30] I. C. McNeill & J. J. Liggat, "The effect of metal acetylacetonates on the thermal degradation of poly (methylmethacrylate): part II–manganese (III) acetylacetonate", Polym. Degrad. Stab. Vol. 37, pp. 25-35. 1992.

 

[31] I. V. Babich, L. A. Davydenko, L. F. Sharanda, Y. V. Plyuto, M. J. Makkee & A. Moulijn, "Oxidative thermolysis of Mn(acac)3 on the surface of Ɣ-alumina support", Thermo. Chimica. Acta, Vol. 456, pp. 145–151. 2007.

[32] Y. Zongxue, C. Lifen, L. Lude, Y. Xujie & W. Xin, "DSC/TG-MS Study on in situ catalytic thermal decomposition of ammonium perchlorate over CoC2O4", Chin. J. Catal. 30, 19–23. 2009.

 

[33] M. W. Evans, R. B. Beyer & L. Culley, "Initiation of deflagration waves at surfaces of ammonium perchlorate–copper chromite–carbon pellets", J. Chem. Phys. Vol. 40, pp. 2431–2438. 1964.

 

[34] R. V. Jacobs & J. Russel, "On the mechanism of decomposition of ammonium perchlorate", Raketnayatekhnikaikosmotavtika. Vol. 4, pp. 275-278. 1967.

 

[35] A. V. Raevsky & G. B. Manelis, "On the mechanism of decomposition of ammonium perchlorate", Dokl. AN SSSR. Vol. 151, pp. 886-889.1963.

     

[36] C. Shalini & N. Pragnesh, "A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate", Saudi Chem. Soc. Vol. 17, pp. 135-149. 2013. 

                                                          

[37] B. S. Svetlov & V. A. Koroban, "On the inhibition of thermal decomposition of ammonium perchlorate by the products of decomposition", Kinetikaikataliz, Vol. 8, pp. 456-459. 1967.

 

[38] B. S. Svetlov & V.A. Koroban, "On the mechanism of thermal decomposition of ammonium perchlorate", Fizikagoreniyai vzryva. Vol. 11, pp. 1343-1345. 1970.

 

[39] V. V. Boldyrev, P.  Yu. T. V. M. Savintsev & G. V. Shchetinina, "On the physicochemical reasons of the formation and growth of reaction nuclei during thermal decomposition of ammonium perchlorate", Kinetikaikataliz. Vol. 11, pp. 1131.1139. 1970.

 

[40] L. David, E. Antonio, V. Rodolphe, A. Matthew, R. Alexander, C. Thomas, L. Eric & S. Sudipta, "Nanoscale Additives Tailor Energetic Materials", Nano Lett. Pp. 2157-2161. 2007.

 

[41] M. W. Evans, R. B. Beyer & L. Culley, "Initiation of deflagration waves at surfaces of ammonium perchlorate–copper chromite–carbon pellets", J. Chem. Phys. Vol. 40, pp. 2431–2438. 1964.