[1] M. Talikowska, X. Fu & G. Lisak, “Application of conducting polymers to wound care and skin tissue engineering: A review”, Biosensors and Bioelectronics, Vol. 135, pp. 50-63, 2019.
[2] SP. Tarassoli, ZM. Jessop, A. Al-Sabah, N. Gao, S. Whitaker, S. Doak & IS. Whitaker, “Skin tissue engineering using 3D bioprinting: an evolving research field”, Journal of Plastic, Reconstructive & Aesthetic Surgery. Vol. 71, pp. 615-23, 2018.
[3] NA. Ismail, KA. Amin & MH. Razali, “ Novel gellan gum incorporated TiO2 nanotubes film for skin tissue engineering”, Materials Letters, Vol. 228, pp.116-20, 2018.
[4] ZP. Rad, J. Mokhtari & M. Abbasi, “ Fabrication and characterization of PCL/zein/gum arabic electrospun nanocomposite scaffold for skin tissue engineering”, Materials Science and Engineering: C, Vol. 93, pp. 356-66, 2018.
[5] AL. Strong, MW. Neumeister & B. Levi, “ Stem cells and tissue engineering: regeneration of the skin and its contents”, Clinics in plastic surgery, Vol. 44, pp. 635-50, 2017.
]6[ م. رفیعی نیا،
ا. یزدانی چم زینی،
ب. موحدی،
ح. صالحی، " سنتز و ارزیابی سمیت سلولی نانوالیاف شیشهی زیستی تهیه شده به روش الکتروریسی جهت ساخت داربست مهندسی بافت"فرآیندهای نوین در مهندسی مواد، شماره 3 ، 145-154، پاییز 1394.
[7] W. Ji, Y. Sun, F. Yang, J. van den Beucken, M. Fan, Z. Chen & J. Jansen, “Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications”, Pharmaceutical research, Vol. 28, pp. 1259-72, 2011.
[8] J. Tan, CK. Chua, K. Leong, K. Chian, W. Leong & L. Tan, “ Esophageal tissue engineering: An in‐depth review on scaffold design” ,Biotechnology and bioengineering, Vol. 109, pp. 1-5, 2012.
[9] A. Gharravi, M. Orazizadeh, M. Hashemitabar, K. Ansari-Asl, S. Banoni, A. Alifard & S. Izadi, “ Status of tissue engineering and regenerative medicine in Iran and related advanced tools: Bioreactors and scaffolds”, Journal of Biomedical Science and Engineering, Vol. 5, pp. 217, 2012.
[10] F. Mohebichamkhorami & A. Alizadeh, “Skin Substitutes; an Updated Review of Products from Year 1980 to 2017” , Journal of Applied Biotechnology Reports, Vol. 4, pp. 615-23, 2017.
[11] B. Bleasdale, S. Finnegan, K. Murray, S. Kelly & SL. Percival, “ The use of silicone adhesives for scar reduction” , Advances in wound care, Vol. 4, pp. 422-30, 2015.
[12] A. Chaudhari, K. Vig, D. Baganizi, R. Sahu, S. Dixit, V. Dennis, S. Singh & S. Pillai, “ Future prospects for scaffolding methods and biomaterials in skin tissue engineering: a review” , International journal of molecular sciences, Vol. 17, pp. 1974, 2016.
[13] D. Liang, BS. Hsiao & B. Chu, “ Functional electrospun nanofibrous scaffolds for biomedical applications” , Advanced drug delivery reviews, Vol. 59, pp. 1392-412, 2007.
[14] A. Kara, S. Tamburaci, F. Tihminlioglu & H. Havitcioglu, “ Bioactive fish scale incorporated chitosan biocomposite scaffolds for bone tissue engineering” , International journal of biological macromolecules, Vol. 130, pp. 266-79, 2019.
]15[ ف. حیدری، ر. بازرگان لاری و م. بحرالعلوم، "ساخت و بررسی خواص نانوکامپوزیت طبیعی و زیست سازگار کایتوسن/مگنتیت" فرآیندهای نوین در مهندسی مواد، شماره 3، 256-247، پاییز، 2015.
[16] V. Balan & L. Verestiuc, “ Strategies to improve chitosan hemocompatibility: A review” , European Polymer Journal, Vol. 53, pp. 171-88, 2014.
[17] F. Ghorbani, B. Kaffashi, P. Shokrollahi, E. Seyedjafari & A. Ardeshirylajimi, “ PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation” , Carbohydrate polymers, Vol. 118, pp.133-42, 2015.
[18] V. Reyna-Urrutia, V. Mata-Haro, J. Cauich-Rodriguez, W. Herrera-Kao & J. Cervantes-Uc, “ Effect of two crosslinking methods on the physicochemical and biological properties of the collagen-chitosan scaffolds” , European Polymer Journal,
Vol.117, pp. 424-433, 2019.
[19] V. Bühler, “ Polyvinylpyrrolidone excipients for pharmaceuticals: povidone, crospovidone and copovidone” , Springer Science & Business Media, 2005.
[20] N. Mahmoudi & A. Simchi, “ On the biological performance of graphene oxide-modified chitosan/polyvinyl pyrrolidone nanocomposite membranes: In vitro and in vivo effects of graphene oxide” , Materials Science and Engineering: C, Vol. 70, pp. 121-31, 2017.
[21] R. Dastjerdi & M. Montazer, “ A review on the application of inorganic nano-structured materials in the modification of textiles: focus on anti-microbial properties” , Colloids and surfaces B: Biointerfaces, Vol. 79, pp. 5-18, 2010.
[22] E. Tavakkol, H. Tavanai, A. Abdolmaleki & M. Morshed, “ Production of conductive electrospun polypyrrole/poly (vinyl pyrrolidone) nanofibers” , Synthetic Metals, Vol. 231, pp. 95-106, 2017.
[23] S. Abbasi & S. Rahimi, “ influence of conerntration, tempera ture, pH, and rotational speed on the flow behavior of iranian gum tragacanth (katira) solution, Iranian journal of food science and technology, Vol. 2, pp. 28-42, 2005.
[24] R. Khajavi, SH. Pourgharbi, A. Kiumarsi & A. Rashidi, “ Gum tragacanth fibers from Astragalus gummifer species: effects of influencing factors on mechanical properties of fibers” , Vol. 7, pp. 2861-2865, 2007.
[25] E. Zare, P. Makvandi & F. Tay, “ Recent progress in the industrial and biomedical applications of tragacanth gum” , Carbohydrate polymers, Vol. 212., pp. 450-467, 2019.
[26] Z. Zarekhalili, S. Bahrami & M. Ranjbar-Mohammadi, Milan PB, “ Fabrication and characterization of PVA/Gum tragacanth/PCL hybrid nanofibrous scaffolds for skin substitutes” , International journal of biological macromolecules, Vol. 94, pp. 679-90, 2017.
[27] M. Ranjbar-Mohammadi, S. Bahrami & M. Joghataei, “ Fabrication of novel nanofiber scaffolds from gum tragacanth/poly (vinyl alcohol) for wound dressing application: in vitro evaluation and antibacterial properties” , Materials Science and Engineering: C, Vol. 33, pp. 4935-43, 2013.
[28] J. Lett, M. Sundareswari, K. Ravichandran, B. Latha & S. Sagadevan, “ Fabrication and characterization of porous scaffolds for bone replacements using gum tragacanth” , Materials Science and Engineering: C, Vol. 96, pp. 487-95, 2019.
[29] K. Zheng, P. Balasubramanian, T. Paterson, R. Stein, S. MacNeil, S. Fiorilli, C. Vitale-Brovarone, J. Shepherd & A. Boccaccini, “ Ag modified mesoporous bioactive glass nanoparticles for enhanced antibacterial activity in 3D infected skin model” , Materials Science and Engineering: C, Vol. 103, pp.109764, 2019.
[30] A. Nada, A. El Aref & S. Sharaf, “The synthesis and characterization of zinc-containing electrospun chitosan/gelatin derivatives with antibacterial properties” , International journal of biological macromolecules, Vol. 133, pp. 538-44. 2019.
[31] M. Ranjbar-Mohammadi, S. Rabbani, S. Bahrami, M. Joghataei & F. Moayer, “ Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly (ε-caprolactone) electrospun nanofibers” , Materials Science and Engineering: C, Vol. 69, pp.1183-91, 2016.
[32] A. Grenha, “Chitosan nanoparticles: a survey of preparation methods” , Journal of drug targeting, Vol. 20, pp. 291-300, 2012.
[33] P. Sankar, G. Rajmohan & M. Rosemary, “ Physico-chemical characterisation and biological evaluation of freeze dried chitosan sponge for wound care” , Materials Letters, Vol. 208, pp. 130-2, 2017.
[34] M. Peter, N. Ganesh, N. Selvamurugan, S. Nair, T. Furuike, H. Tamura & R. Jayakumar, “ Preparation and characterization of chitosan–gelatin/nanohydroxyapatite composite scaffolds for tissue engineering applications” , Carbohydrate Polymers, Vol. 80, pp. 687-94, 2010.
]35[ ا. کدخدائیان حمید، ا. سلاطی, م. انصاری، " استفاده از مهندسی بافت پوست به منظور دستیابی به روشی نوین جهت ساخت یک جایگزین پوستی با استفاده از تثبیت کیتوسان و ژلاتین بر روی فیلم سیلیکونی" مجله علمی دانشگاه علوم پزشکی کردستان، شماره 6، 88-72، زمستان، 1397.
[36] K. Kanimozhi, S. Basha & V. Kumari, “ Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering” , Materials Science and Engineering: C, Vol. 61, pp. 484-91, 2016.
[37] O. Gryshkov, N. Klyui, V. Temchenko, V. Kyselov, A. Chatterjee, A. Belyaev, L. Lauterboeck, D. Iarmolenko & B. Glasmacher, “ Porous biomorphic silicon carbide ceramics coated with hydroxyapatite as prospective materials for bone implants” , Materials Science and Engineering: C, Vol. 68, pp.143-52, 2016.
[38] F. Ghorbani, B. Kaffashi, P. Shokrollahi, E. Seyedjafari & A. Ardeshirylajimi, “ PCL/chitosan/Zn-doped nHA electrospun nanocomposite scaffold promotes adipose derived stem cells adhesion and proliferation” , Carbohydrate polymers, Vol.118, pp. 133-42, 2015.
[39] N. Johari, M. Fathi & M. Golozar, “ Fabrication, characterization and evaluation of the mechanical properties of poly (ε-caprolactone)/nano-fluoridated hydroxyapatite scaffold for bone tissue engineering” , Composites Part B: Engineering, Vol. 43, pp. 1671-5, 2012.
[40] K. Kanimozhi, S. Basha &V. Kumari, “ Processing and characterization of chitosan/PVA and methylcellulose porous scaffolds for tissue engineering” , Materials Science and Engineering: C, Vol. 61, pp. 484-91, 2016.
[41] S. Talaei & A. Kiani, “ Study on permeability of bionanocomposite film based on Tragacanth gum-Chitosan-Graphene oxide” , Indian Journal of Fundamental and Applied Life Sciences, Vol. 5, pp. 25-31, 2015.
[42] Q. Yao, W. Li, S. Yu, L. Ma & D. Jin, “ Boccaccini AR, Liu Y. Multifunctional chitosan/polyvinyl pyrrolidone/45S5 Bioglass® scaffolds for MC3T3-E1 cell stimulation and drug release” , Materials Science and Engineering: C, Vol. 56, pp. 473-80, 2015.
[43] M. Ranjbar-Mohammadi, M. Prabhakaran, S. Bahrami & S.Ramakrishna, “ Gum tragacanth/poly (l-lactic acid) nanofibrous scaffolds for application in regeneration of peripheral nerve damage” , Carbohydrate polymers, Vol. 140, pp. 104-12, 2016.
[44]M. Ranjbar-Mohammadi & S. Bahrami, “ Development of nanofibrous scaffolds containing gum tragacanth/poly (ε-caprolactone) for application as skin scaffolds” , Materials Science and Engineering: Vol. 48, pp. 71-9, 2015.
[45] M. Ranjbar-Mohammadi, M. Zamani, M Prabhakaran, S. Bahrami & S. Ramakrishna, “ Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration” , Materials Science and Engineering: C,Vol.58, pp. 521-31, 2016.
[46] R. Jayakumar, M. Prabaharan, S. Nair, S. Tokura, H. Tamura & N. Selvamurugan, “ Novel carboxymethyl derivatives of chitin and chitosan materials and their biomedical applications” , Progress in Materials Science, Vol. 55, pp. 675-709, 2010.
[47] B. Bai, “ Electrospun chitosan nanofibers for virus removal” , 2012.
[48] M. Ranjbar-Mohammadi, S. Rabbani, S. Bahrami, M. Joghataei & F. Moayer, “ Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly (ε-caprolactone) electrospun nanofibers” , Materials Science and Engineering: C, Vol. 69, pp. 1183-91, 2016.
[49] W. Sarhan & H. Azzazy, “ High concentration honey chitosan electrospun nanofibers: biocompatibility and antibacterial effects” , Carbohydrate polymers, Vol.122, pp.135-43, 2015.