[1] Y. Granbom, "Structure and mechanical properties of dual-phase steels", Royal Institute of Technology, 2010.
[2] ش. خیراندیش و م. اسدی اسدآباد، "دانشگاه علم و صنعت ایران"، چاپ اول، 1394.
[3] N. Peranio, Y.J. Li, F. Roters & D. Raabe, "Microstructure and texture evolution in dual-phase steels: Competition between recovery", recrystallization, and phase transformation, Mater. Sci. Eng. A. 527. 4161–4168. doi:10.1016/j.msea.2010.03.028, 2010.
[4] M. Shome & M. Tumuluru, "Welding and Joining of Advanced High Strength Steels (AHSS)". doi:10.1016/C2013-0-16259-9. 2015.
[5] P.H.O.M. Alves, M.S.F. Lima, D. Raabe, H.R.Z. Sandim, Laser beam welding of dual-phase DP1000 steel, J. Mater. Process. Technol. vol. 252, pp, 498–510. doi:10.1016/j.jmatprotec.2017.10.008. 2018.
[6] H. Ashrafi, M. Shamanian, R. Emadi & N. Saeidi, "Microstructure, Tensile Properties and Work Hardening Behavior of GTA-Welded Dual-Phase Steels", J. Mater. Eng. Perform. vol. 26, pp, 1414–1423. doi:10.1007/s11665-017-2544-7. 2017.
[7] P. Eftekharimilani, E.M. Van Der Aa, M.J.M. Hermans & I.M. Richardson, "Microstructural characterisation of double pulse resistance spot welded advanced high strength steel", Sci. Technol. Weld. Join. vol. 22, pp, 545–554. doi:10.1080/13621718.2016.1274848. 2017.
[8] R. Nandan, T. DebRoy & H. K. D. H. K. D. H. Bhadeshia, "Recent advances in friction-stir welding - Process, weldment structure and properties", Prog. Mater. Sci. vol. 53, pp, 980–1023. doi:10.1016/j.pmatsci.2008.05.001. 2008.
[9] T. Mohandas, G. Madhusudan Reddy & B. S. Kumar, "Heat-affected zone softening in high-strength low-alloy steels", J. Mater. Process. Technol. vol. 88, pp, 284–294. doi:http://dx.doi.org/10.1016/S0924-0136(98)00404-X. 1999.
[10] V. H. Baltazar Hernandez, S. S. Nayak & Y. Zhou, "Tempering of martensite in dual-phase steels and its effects on softening behavior", Metall. Mater. Trans. A Phys. Metall. Mater. Sci. vol. 42, pp, 3115–3129. doi:10.1007/s11661-011-0739-3. 2011.
[11] J. H. Lee, S. H. Park, H. S. Kwon, G. S. Kim & C. S. Lee, Laser, tungsten inert gas, and metal active gas welding of DP780 steel: Comparison of hardness, tensile properties and fatigue resistance, Mater. Des. vol. 64, pp, 559–565. doi:http://dx.doi.org/10.1016/j.matdes.2014.07.065. 2014.
[12] D. Dong, Y. Liu, Y. Yang, J. Li, M. Ma & T. Jiang, "Microstructure and dynamic tensile behavior of DP600 dual phase steel joint by laser welding", Mater. Sci. Eng. A. vol. 594, pp, 17–25. doi:http://dx.doi.org/10.1016/j.msea.2013.11.047. 2014.
[13] J. Wang, L. Yang, M. Sun, T. Liu & H. Li, "Effect of energy input on the microstructure and properties of butt joints in DP1000 steel laser welding", Mater. Des. vol. 90, pp, 642–649. doi:http://dx.doi.org/10.1016/j.matdes.2015.11.006. 2016.
[14] J. Wang, L. Yang, M. Sun, T. Liu & H. Li, "A study of the softening mechanisms of laser-welded DP1000 steel butt joints", Mater. Des. vol. 97, pp, 118–125. doi:10.1016/j.matdes.2016.02.071. 2016.
[15] W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Nurch, P. Temple-Smith & C. Dawes, "Patents on Friction Stir Butt Welding", 1995.
[16] R. S. Mishra, P. S. De & N. Kumar, "Friction Stir Welding and Processing", Frict. Stir Weld. Process. doi:10.1007/978-3-319-07043-8. 2014.
[17] M. Matsushita, Y. Kitani, R. Ikeda, M. Ono, H. Fujii & Y. ‐D. Chung, "Development of friction stir welding of high strength steel sheet", Sci. Technol. Weld. Join. vol. 16, pp, 181–187. doi:10.1179/1362171810Y.0000000026. 2011.
[18] M. P. Miles, J. Pew, T. W. Nelson & M. Li, "Comparison of formability of friction stir welded and laser welded dual phase 590 steel sheets", Sci. Technol. Weld. Join. vol. 11, pp. 384–388. doi:10.1179/174329306X107737. 2006.
[19] H. Kokawa, Y. S. Sato & S. Mironov, "Microstructure evolution of metallic materials during friction stir welding", in: H. Fujii (Ed.), Proc. 1st Int. Jt. Symp. Join. Weld., Woodhead Publishing, pp, 5–13. doi:https://doi.org/10.1533/978-1-78242-164-1.5. 2013.
[20] K. Chung, W. Lee, D. Kim, J. Kim, K.-H. Chung, C. Kim, K. Okamoto & R.H. Wagoner, "Macro-performance evaluation of friction stir welded automotive tailor-welded blank sheets: Part I – Material properties", Int. J. Solids Struct. vol. 47, pp, 1048–1062. doi:10.1016/j.ijsolstr.2009.12.022. 2010.
[21] K. Dehghani & A. Chabok, "Dependence of Zener parameter on the nanograins formed during friction stir processing of interstitial free steels", Mater. Sci. Eng. A. vol. 528, pp, 4325–4330.doi:https://doi.org/10.1016/j.msea.2011.02.06. 2011.
[22] Y. D. Chung, H. Fujii, R. Ueji & K. Nogi, "Friction stir welding of hypereutectoid steel (SK5) below eutectoid temperature", Sci. Technol. Weld. Join. vol. 14, pp, 233–238. doi:10.1179/136217109X415901. 2013.
[23] H. G. Tehrani-Moghadam, H. R. Jafarian, M. T. Salehi & A. R. Eivani, "Evolution of microstructure and mechanical properties of Fe-24Ni-0.3C TRIP steel during friction stir processing", Mater. Sci. Eng. A. vol. 718, pp, 335–344. doi:10.1016/j.msea.2018.01.126. 2018.
[24] ASTM Standard E 8: Standard test methods for tension testing of metallic materials, 03.01., ASTM, 2000.
[25] ر. پوریامنش و ک. دهقانی "مطالعه ریزساختار و سختی جوش اصطکاکی اغتشاشی فولاد در حضور ذرات اکسید تیتانیوم " فرایندهای نوین در مهندسی مواد، دوره دوازدهم، شماره سوم، سال 1397 .
[26] S. Ragu Nathan, V. Balasubramanian, S. Malarvizhi & A. G. Rao, "Effect of Tool Shoulder Diameter on Stir Zone Characteristics of Friction Stir Welded HSLA Steel Joints", Trans. Indian Inst. Met. vol. 69, pp, 1861–1869. doi:10.1007/s12666-016-0846-3. 2016.
[27] S. Mironov, Y. S. S. Sato, S. Yoneyama, H. Kokawa, H. T. T. Fujii & S. Hirano, "Microstructure and tensile behavior of friction-stir welded TRIP steel", Mater. Sci. Eng. A. vol. 717, pp, 26–33. doi:10.1016/j.msea.2018.01.053. 2018.
[28] H. Das, K. J. Lee & S. T. Hong, "Study on Microtexture and Martensite Formation of Friction Stir Lap-welded DP 590 Steel within A1to A3Temperature Range", J. Mater. Eng. Perform. vol. 26, pp, 3607–3613. doi:10.1007/s11665-017-2780-x. 2017.
[29] M. Aksoy, "Effect of initial grain size on microstructure and toughness of intercritical heat-affected zone of a low carbon steel", vol. 286, pp, 289–297. 2000.
[30] S. B. Singh, "Mechanisms of bainite transformation in steels", Phase Transform. Steels. pp, 385–416. doi:10.1533/9780857096104.3.385. 2012.
[31] M. Ghosh, K. Kumar & R. S. Mishra, "Friction stir lap welded advanced high strength steels: Microstructure and mechanical properties", Mater. Sci. Eng. A. vol. 528, pp, 8111–8119. doi:10.1016/j.msea.2011.06.087. 2011.
[32] M. Xia, E. Biro, Z. Tian & Y. N. Zhou, "Effects of heat input and martensite on HAZ softening in laser welding of dual phase steels", ISIJ Int. vol. 48, pp, 809–814. doi:10.2355/isijinternational.48.809. 2008.
[33] M. Ghosh, M. Hussain & R. K. Gupta, "Effect of welding parameters on microstructure and mechanical properties of friction stir welded plain carbon steel", ISIJ Int. vol. 52, pp, 477–482. doi:10.2355/isijinternational.52.477. 2012.
[34] V. C. Shunmugasamy, B. Mansoor, G. Ayoub & R. Hamade, "Friction Stir Welding of Low-Carbon AISI 1006 Steel: Room and High-Temperature Mechanical Properties", J. Mater. Eng. Perform. vol. 27, pp, 1673–1684. doi:10.1007/s11665-018-3280-3. 2018.
[35] S. K. Panda, M. L. Kuntz & Y. Zhou, "Finite element analysis of effects of soft zones on formability of laser welded advanced high strength steels", Sci. Technol. Weld. Join. vol. 14, pp, 52–61. doi:10.1179/136217108X343920. 2009.
[36] Q. Sun, H.-S. Di, J.-C. Li & X.-N. Wang, "Effect of pulse frequency on microstructure and properties of welded joints for dual phase steel by pulsed laser welding, Mater". Des. vol. 105, pp, 201–211. doi:http://dx.doi.org/10.1016/j.matdes.2016.05.071. 2016.
[37] A. Tiziani, P. Ferro, R. Cervo & M. Durante, "Effects of different welding technologies on metallurgical anf mechanical properties of DP600 steel welded joints", La Metall. Ital. 2011.